精英家教网 > 高中数学 > 题目详情
13.在正方体ABCD-A1B1C1D1中,截面BC1D内的动点P到平面ABCD的距离到顶点C1的距离相等,则动点P的轨迹的离心率为(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{6}}{2}$C.1D.$\frac{\sqrt{3}}{3}$

分析 求出P所在平面与底面所成二面角的余弦函数值,转化P到底面的距离为到BD的距离,然后求解离心率.

解答 解:由题意可知,截面BC1D与底面ABCD所成的角为:α,设正方体的棱长为1,
tanα=$\frac{1}{\frac{\sqrt{2}}{2}}$=$\sqrt{2}$,则cosα=$\frac{\sqrt{3}}{3}$,sinα=$\frac{\sqrt{6}}{3}$,
截面BC1D内的动点P到平面ABCD的距离到顶点C1的距离相等,
设距离为m,则PE=$\frac{\sqrt{6}m}{2}$,
所求曲线的离心率为:$\frac{PC}{PE}$=$\frac{m}{\frac{\sqrt{6}m}{2}}$=$\frac{\sqrt{6}}{3}$.
故选:A.

点评 本题考查二面角的平面角的求法.解析几何与立体几何的综合题目,考查空间想象能力,转化思想的应用,难度比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.正四面体内镶在一个表面积为36π的球内,求这个四面体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知an=n+2,从无穷数列{an}中抽取部分项a${\;}_{{k}_{1}}$,a${\;}_{{k}_{2}}$,…a${\;}_{{k}_{3}}$,…组成一个等比数列{bn},其中1=k1<k2<k3<…<kn<kn+1<…,(n∈N*),kn∈N*,记这个等比数列的公比为q.
(1)求证:q∈N*,q≥2;
(2)求证:$\frac{{q}^{n}-1}{q-1}$(n∈N*)是正整数;
(3)设数列{an}的前n项的和为Sn,若存在n∈N*,使Sn≥qn成立,求q的所有可能取值,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在长方体ABCD-A′B′C′D′中,AB=BC=2,过A′,C′,B三点的平面截去长方体的一个角后,得到ABCD-A′C′D′,
(Ⅰ)若DD′=3,求几何体ABCD-A′C′D′的体积;
(Ⅱ)若DD′>1,且直线A′D与平面A′BC′所成的角的正弦值为$\frac{4\sqrt{5}}{15}$,求二面角D-A′B-C′的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=2,点E在边AB上,点F在边CD上,且EF∥AD,沿EF将面EBCF折起,使得CF⊥AE.
(1)若点M在CD上,且FM⊥CD,求证:FM⊥平面ACD;
(2)当三棱锥F-ABE的体积最大时,在线段CF上是否存在一点G,使得DG∥平面ABC,若存在,求此时线段CG的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在边长为4的菱形ABCD中,∠DAB=60°,点E、F分别是边CD、CB的中点,AC交EF于点O,沿EF将△CEF翻折到△PEF,连接PA、PB、PD,得到五棱锥P-ABFED,且PB=$\sqrt{10}$.

(1)求证:BD⊥平面POA;
(2)求四棱锥P-BDEF的体积;
(3)求二面角B-AP-O的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,正方体ABCD-A1B1C1D1中,E是棱B1C1的中点,动点P为正方体各面上的任一点.
①若动点P是AD的中点,则A1E∥平面C1CP;
②若动点P在底面ABCD内,且PA1=A1E,则点P运动轨迹为一条线段;
③若动点P是CC1的中点,则A1E,DP为异面直线;
④若动点P与C点重合,则平面A1EP截该正方体所得的截面的形状为菱形.
以上为真命题的序号的是(  )
A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的实轴长为4$\sqrt{2}$,虚轴的一个端点与抛物线x2=2py(p>0)的焦点重合,直线y=kx-1与抛物线相切且与双曲线的一条渐近线平行,则p=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=|x|-1,若关于x的方程f2(x)+(2m-1)f(x)+4-2m=0有四个不同的实数解,则实数m的取值范围是(  )
A.m<-2B.m<-2.5C.m<1.5D.m>1.5

查看答案和解析>>

同步练习册答案