精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex,g(x)=ax+1(a是不为零的常数,且a∈R).
(1)讨论函数F(x)=f(x)•g(x)的单调性;
(2)当a=-1时,方程f(x)•g(x)=t在区间[-1,1]上有两个解,求实数t的取值范围.
(1)由题意可得F(x)=f(x)g(x)=ex(ax+1)
∴F′(x)=ex(ax+a+1)
令∴F′(x)=ex(ax+a+1)=0
x=-
a+1
a

∴当a>0时F(x)=f(x)•g(x)的单调增区间为(-
a+1
a
,+∞)单调减区间为(-∞,-
a+1
a

当a<0时F(x)=f(x)•g(x)的单调增区间为(-∞,-
a+1
a
)单调减区间为(-
a+1
a
,+∞)
(2)由题意可得当a=-1时,F(x)=f(x)•g(x)=ex(-x+1)
由(1)可得当a=-1时可以得出F(x)在(-∞,0)上为增函数,在(0,+∞)上为减函数
∴函数的最大值为F(0)=1
又∵方程f(x)•g(x)=t在区间[-1,1]上有两个解
∴实数t的取值范围是(-∞,1).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案