已知椭圆C1:
(a>b>0)的离心率为
,x轴被抛物线C2:y=x2-b截得的线段长等于C1的长半轴长.
(1)求C1,C2的方程;
(2)设C2与y轴的交点为M,过坐标原点O的直线l:y=kx与C2相交于A,B两点,直线MA,MB分别与C1相交于D,E.
①证明:
·
为定值;
②记△MDE的面积为S,试把S表示成k的函数,并求S的最大值.
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:解答题
已知椭圆C1:
+
=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.
![]()
(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:解答题
在平面直角坐标系xOy中,已知椭圆C1:
+
=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:选择题
已知椭圆C1:
+
=1(a>b>0)与双曲线C2:x2-
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )
(A)a2=
(B)a2=13
(C)b2=
(D)b2=2
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求椭圆C1的离心率;
(2)若
·
的最大值为49,求椭圆C1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)
已知椭圆C1:
(a>b>0)的离心率为
,直线
:
+2=0与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切。
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F 1,右焦点F2,直线
过点F1且垂直于椭圆的长轴,动直线
垂直直线
于点P,线段PF2的垂直平分线交
于点M,求点M的轨迹C2的方程;
(3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的点,且AB⊥ BC,求Yo的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com