精英家教网 > 高中数学 > 题目详情
6.将函数f(x)=$sin(2x-\frac{π}{4})$向右平移$\frac{3π}{8}$个单位,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)与x=-$\frac{π}{2}$,x=$\frac{π}{3}$,x轴围成的图形面积为(  )
A.$\frac{5}{2}$B.$1+\frac{{\sqrt{3}}}{2}$C.$\frac{3}{2}$D.$1-\frac{{\sqrt{3}}}{2}$

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,可得g(x)=-sinx,再利用定积分求得g(x)与x=-$\frac{π}{2}$,x=$\frac{π}{3}$,x轴围成的图形面积.

解答 解:将函数f(x)=$sin(2x-\frac{π}{4})$向右平移$\frac{3π}{8}$个单位,可得y=sin[2(x-$\frac{3π}{8}$)-$\frac{π}{4}$]=-sin(π-2x)=-sin2x的图象;
再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)=-sinx的图象,
故函数y=g(x)与x=-$\frac{π}{2}$,x=$\frac{π}{3}$,x轴围成的图形面积为${∫}_{-\frac{π}{2}}^{0}$(-sinx)-${∫}_{0}^{\frac{π}{3}}$(-sinx)=${|}_{-\frac{π}{2}}^{0}$cosx-${|}_{0}^{\frac{π}{3}}$(cosx)=1+$\frac{1}{2}$=$\frac{3}{2}$,
故选:C.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,用定积分求曲线围成的面积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.直线3x+4y-5=0与圆2x2+2y2-4x-2y+1=0的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若(2+i)(b+i)是实数(i是虚数单位,b是实数),则b=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}a{x}^{2}$+bx在[1,2]上为减函数,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点P在△ABC内部(包含边界),|AC|=3,|AB|=4,|BC|=5,点P到三边的距离分别是d1,d2,d3,则d1+d2+d3的取值范围是[$\frac{12}{5}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=loga|x+b|在定义域内具有奇偶性,f(b-2)与f(a+1)的大小关系是(  )
A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点A,B分别在射线CM,CN(不含端点C)上运动,∠MCN=$\frac{2π}{3}$,在△ABC中,角A,B,C所对的边分别是a,b,c
(1)若a,b,c依次成等差数列,且公差为2,求c的值:
(2)若c=$\sqrt{3}$,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和是An=$\frac{3}{2}$(an -1)(n∈N*),数列{bn}的通项公式为bn=4n+3(n∈N*).
(1)求数列{an}的通项公式;
(2)若d∈{a1,a2,…,an ,…}∩{b1,b2,…,bn,…},则称d为数列{an}与{bn}的公共项,将数列{an}与{bn}的公共项按照它们在原数列中的先后顺序排成一个新的数列{dn},证明数列{dn}的通项公式是dn=32n+1(n∈N*);
(3)设数列{dn}中的第n项是数列{bn}中的第r项,Br为数列{bn}的前r项的和,Dn为数列{dn}的前n项和,Tn=Br-Dn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.关于x的方程x-m+$\sqrt{9-{x}^{2}}$=0恰有两解,则m的取值范围是[3,3$\sqrt{2}$).

查看答案和解析>>

同步练习册答案