精英家教网 > 高中数学 > 题目详情
17.用数学归纳法证明62n-1+1(n∈N)能被7整除.

分析 用数学归纳法证明整除问题时分为两个步骤,第一步,先证明当n=1时,结论显然成立,第二步,先假设假设当n=k时结论成立,利用此假设结合因式的配凑法,证明当n=k+1时,结论也成立即可

解答 证明:①当n=1时,62×1-1+1=6+1=7,能被7整除; 
②假设当n=k时,即62k-1+1(k∈N)能被7整除,
那么当n=k+1时:62(k+1)-1+1=62k+1+1=6(2k-1)+2+1=62k-1×62+1═62k-1×36+1═62k-1×(35+1)+1=62k-1×35+62k-1+1=62k-1×5×7+(62k-1+1)
由假设知62k-1×5×7+(62k-1+1)能被7整除
所以当n=k+1时,命题也成立
由①②可知,62n-1+1(n∈N)能被7整除

点评 本题主要考查数学归纳法,数学归纳法的基本形式:设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基),2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知点P在双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{16}$=1的右支上,F为双曲线的左焦点,Q为线段PF的中点,O为坐标原点,若|OQ|的最小值为1,则双曲线的离心率为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设F1、F2是椭圆$\frac{x^2}{4}+\frac{y^2}{3}$=1的左右焦点,点P在椭圆上半部分且满足PF2⊥x轴,则∠F1PF2的角平分线所在的直线方程为4x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设$a=\frac{1}{2}sin{2°}+\frac{{\sqrt{3}}}{2}cos{2°}$,b=1-2sin213°,$c=\frac{{\sqrt{3}}}{2}$,则a,b,c的大小关系是c<a<b.(从小到大排列)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$tan({x+\frac{π}{4}})=2$,则sin2x=(  )
A.$-\frac{3}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{3}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔12小时各服一次药,每次一片,每片200毫克.假设该患者的肾脏每12小时从体内大约排出这种药在其体内残留量的50%,并且医生认为这种药在体内的残留量不超过400毫克时无明显副作用.若该患者第一天上午8点第一次服药,则第二天上午8点服完药时,药在其体内的残留量是350毫克,若该患者坚持长期服用此药无明显副作用(此空填“有”或“无”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列不等式的解集.
(1)x2+4x+4>0
(2)(1-2x)(x-1)3(x+1)2<0
(3)$\frac{3x-5}{{x}^{2}+2x-3}$≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC的内角A,B,C所对的边分别为a,b,c,asinB-$\sqrt{3}$bcosA=0.
(1)求A;  
(2)若a=$\sqrt{21}$,b=4求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=4cosθ,θ∈[0,$\frac{π}{2}$].
(I)求C的参数方程;
(II)若半圆C与圆D:(x-5)2+(y-$\sqrt{3}$)2=m(m是常数,m>0)相切.试求切点的直角坐标.

查看答案和解析>>

同步练习册答案