精英家教网 > 高中数学 > 题目详情
1-i
1+i
2014=
 
考点:复数代数形式的混合运算
专题:计算题,数系的扩充和复数
分析:先化简
1-i
1+i
,代入表达式可求.
解答: 解:∵
1-i
1+i
=
(1-i)2
(1+i)(1-i)
=-i,
∴(
1-i
1+i
2014=(-i)2014=i4×503+2=-1,
故答案为:-1.
点评:该题考查复数代数形式的乘除运算,属基础题,熟记相关运算法则是解题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

cos(-945°)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1+
2
)5
=a+
2
b(a,b为有理数),则a-b的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
5
x+2
<1的解集为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={-2,-1,0,1,2},集合A={-1,0,1},B={-2,-1,0},则A∩(∁UB)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a5a7=6,a2+a10=5,则
a18
a10
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
3
16
x2+
3
x
(x>0)的最小值为(  )
A、
3
33
2
B、
9
4
C、不存在
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x3+log2x+e-x,则y′=(  )
A、
1
4
x4+
1
xln2
+e-x
B、
1
4
x4+
1
xln2
-e-x
C、3x2+
1
xln2
-e-x
D、3x2+
1
xln2
+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p和命题q,“p∨q”的否定是真命题,则必有(  )
A、p真q真B、p假q假
C、p真q假D、p假q真

查看答案和解析>>

同步练习册答案