精英家教网 > 高中数学 > 题目详情
18.设φ∈R,则“φ=$\frac{π}{2}$”是“f(x)=cos(2x+φ)为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用充分、必要条件性质判断即可.

解答 解:若φ=$\frac{π}{2}$,则有f(x)=cos(2x+$\frac{π}{2}$)=-sin2x,为奇函数,充分条件;
若f(x)=cos(2x+φ)为奇函数,则有f(-x)=-f(x),即cos(-2x+φ)=-cos(2x+φ),不一定φ=$\frac{π}{2}$,不必要条件,
则“φ=$\frac{π}{2}$”是“f(x)=cos(2x+φ)为奇函数”的充分不必要条件,
故选:A.

点评 此题考查了必要条件、充分条件与充要条件,根据充分条件和必要条件的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=x2(x-3)的单调递减区间是(  )
A.(-∞,0)B.(2,+∞)C.(0,2)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.各项都是正数的等比数列{an}的公比q≠1,${a_1},\frac{1}{2}{a_3},{a_2}_{\;}$成等差数列,则$\frac{{{a_3}+{a_4}}}{{{a_4}+{a_5}}}$=(  )
A.$\frac{{-1+\sqrt{3}}}{2}$B.$\frac{{-1+\sqrt{5}}}{2}$C.$\frac{{1+\sqrt{5}}}{2}$D.$2+\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在xOy平面上,将抛物线弧y=1-x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0,y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1-y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.向量$\overrightarrow{a}$=(-1,1),且$\overrightarrow{a}$与$\overrightarrow{a}$+2$\overrightarrow{b}$方向相同,则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围是(  )
A.(-1,1)B.(-1,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+x2
(1)求函数h(x)=f(x)-3x的极值;
(2)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围;
(3)设F(x)=2f(x)-3x2-kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且x0=$\frac{m+n}{2}$,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的奇函数f(x)满足f(-x)=-f(x),f(x+1)=f(1-x),且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an},Sn为其前n项和,a5=10,S7=56.
(1)求数列{an}的通项公式;
(2)若bn=a1+3an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.2016年国庆期间,某大型商场举行购物送劵活动,一名顾客计划到该商场购物,他有三张商场优惠劵,商场规定每购买一件商品只能使用一张优惠劵,根据购买商品的标价,三张优惠劵的优惠方式不同,具体如下:
优惠劵A:若商品标价超过100元,则付款时减免标价的10%;
优惠劵B:若商品标价超过200元,则付款时减免30元;
优惠劵C:若商品标价超过200元,则付款时减免超过200元部分的20%.
若顾客想使用优惠劵C,并希望比使用优惠劵A或优惠劵B减免的钱都多,则他购买的商品的标价应高于(  )
A.300元B.400元C.500元D.600元

查看答案和解析>>

同步练习册答案