精英家教网 > 高中数学 > 题目详情
15.在△ABC中,∠B为钝角,则有(  )
A.sinA>cosBB.sinA<cosB
C.sinA=cosBD.sinA,cosB大小不确定

分析 根据三角函数值的符号值进行判断即可.

解答 解:在△ABC中,∠B为钝角,则cosB<0,sinA>0,
则恒有sinA>cosB,
故选:A

点评 本题主要考查三角函数取值符号和角的关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若sinθ=2cosθ,则sin2θ+sinθcosθ-2cos2θ=(  )
A.$-\frac{4}{3}$B.$\frac{5}{4}$C.$-\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数y=f(x)的导函数为f′(x),满足f′(x)<f(x),且f(0)=1,则不等式f(x)<ex的解集为(  )
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}中,a2=2,a5=128.
(1)求通项an
(2)若bn=log2an,{bn•an}数列的前n项和为Sn,求Sn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinx-$\sqrt{3}$cosx+2,记函数f(x)的最小正周期为β,向量$\overrightarrow a=(2,cosα)$,$\overrightarrow b=(1,tan(α+\frac{β}{2}))$,$(0<α<\frac{π}{4})$,且$\overrightarrow a•\overrightarrow b=\frac{7}{3}$
(1)求函数f(x)的单调递减区间;
(2)求$\frac{{2{{cos}^2}α-sin2(α+β)}}{cosα-sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若在区间(a,b)内,f′(x)>0,且f(a)≥0,则在(a,b)内有(  )
A.f(x)>0B.f(x)<0C.f(x)=0D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{16}-\frac{y^2}{4}=1$的离心率e的值为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知:$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$是同一平面内的三个向量,其中向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2)
(1)若k$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-4$\overrightarrow{b}$平行,求实数k的值;
(2)若k$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-4$\overrightarrow{b}$垂直,求实数k的值.
(3)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知Sn=2n2+4n,设{$\frac{1}{{S}_{n}}$}的前n项和为Tn,证明:$\frac{1}{6}$≤Tn≤$\frac{3}{8}$.

查看答案和解析>>

同步练习册答案