精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.
(Ⅰ)求f(x)与g(x)的解析式;
(Ⅱ)若F(x)=exg(x)-λ[f(x)+x2]在[-2,0]上是增函数,求实数λ的取值范围.
考点:二次函数的性质,抽象函数及其应用
专题:综合题,函数的性质及应用
分析:(Ⅰ)根据函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,求f(x)的解析式,利用函数y=g(x)与y=f(x)的图象关于原点对称,求出g(x)的解析式;
(Ⅱ)(x)在[-2,0]是增函数,即F'(x)=ex(-x2+2)-2λ≥0在[-2,0]恒成立,亦即2λ≤ex(-x2+2)在[-2,0]上恒成立,即2λ≤[ex(-x2+2)]min在[-2,0]恒成立.
解答: 解:(Ⅰ)由题意知:m=2,n=0,
∴f(x)=x2+2x…(2分)
设函数y=f(x)图象上的任意一点Q(x0,y0)关于原点的对称点为P(x,y),则x0=-x,y0=-y,…(4分)
∵点Q(x0,y0)在y=f(x)的图象上
∴-y=x2-2x,y=-x2+2x
∴g(x)=-x2+2x…(6分)
(Ⅱ) F(x)=ex(-x2+2x)-λ•2x
∵F(x)在[-2,0]是增函数,即F'(x)=ex(-x2+2)-2λ≥0在[-2,0]恒成立.
亦即2λ≤ex(-x2+2)在[-2,0]上恒成立.即2λ≤[ex(-x2+2)]min在[-2,0]恒成立.…(8分)
令h(x)=ex(-x2+2),而h'(x)=ex(-x2-2x+2)…(10分)
当[-2,0]时,-x2-2x+2>0,从而h'(x)=ex(-x2-2x+2)>0
∴h(x)在[-2,0]为增函数,∴[h(x)]min=h(-2)=-
2
e2
…(12分)
λ≤-
1
e2
,实数λ的取值范围是(-∞,-
1
e2
]
.…(13分)
点评:本题考查函数解析式的确定,考查导数知识的运用,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,侧面PAD⊥底面ABCD,ABCD是直角梯形,△PAD为正三角形,DA⊥AB,CB⊥AB,AB=AD=1,BC=2,E为BC的中点,M为侧棱PB上一点.
(Ⅰ)求直线PC与平面PAD所成的角;
(Ⅱ)是否存在点M使直线BD⊥平面MAE?若存在,求出
PM
MB
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标系中,已知点A,B的极坐标分别为(1,0),(4,0),点P是平面内一动点,且|PB|=2|PA|,动点P的轨迹为曲线C.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)以极点为直角坐标系原点,极轴为x正半轴建立直角坐标系xOy,设点M(x,y)在曲线C上移动,求式子3x-4y+5的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

巳知函数f(x)=
1
3
ax2-bx-1nx,其中a,b∈R.
(Ⅰ)当a=3,b=-1时,求函数f(x)的最小值;
(Ⅱ)若曲线y=f(x)在点(e,f(e)处的切线方程为2x-3y-e=0(e=2.71828…为自然对数的底数),求a,b的值;
(Ⅲ)当a>0,且a为常数时,若函数h(x)=x[f(x)+1nx]对任意的x1>x2≥4,总有
h(x1)-h(x2)
x1-x2
>-1成立,试用a表示出b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=xn(1-x)2在[
1
2
,1]上的最大值为an(n=1,2,3,…).
(Ⅰ)求函数fn(x)的导函数fn′(x),以及a1,a2
(Ⅱ)求数列{an}的通项公式,并求证对任何正整数n(n≥2),都有an
1
(n+2)2
成立;
(Ⅲ)设数列{an}的前n项和为Sn,求证:对任意正整数n,都有Sn
7
16
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读下面材料:根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ----------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2
代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(1)利用上述结论,试求sin15°+sin75°的值.
(2)类比上述推证方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是⊙M:(x+1)2+y2=16上的任意一点,点N(1,0),线段PN的垂直平分线l和半径MP相交于点Q
(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)已知直线l′与点Q的轨迹交于点A,B,且直线l′的方程为y=kx+
3
(k>0),若O为坐标原点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各个时间段内的频率如下表:
时间(分钟)10~2020~3030~4040~5050~60
L1的频率0.10.20.30.20.2
L2的频率00.10.40.40.1
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(2)如果甲随机地选取了一条路径,求甲在允许的时间内能赶到火车站的概率;
(3)如果甲、乙都是随机地选取了一条路径,求他们在允许的时间内至少有一人不能赶到火车站的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程x+k-
1-x2
=0只有一个解,则实数k的取值范围是
 

查看答案和解析>>

同步练习册答案