精英家教网 > 高中数学 > 题目详情
已知点P是⊙M:(x+1)2+y2=16上的任意一点,点N(1,0),线段PN的垂直平分线l和半径MP相交于点Q
(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)已知直线l′与点Q的轨迹交于点A,B,且直线l′的方程为y=kx+
3
(k>0),若O为坐标原点,求△OAB面积的最大值.
考点:直线和圆的方程的应用,轨迹方程
专题:圆锥曲线中的最值与范围问题
分析:(1)连结QN,由椭圆定义知点Q的轨迹是以M(-1,0),N(1,0)为焦点,长轴长为2a=4,短轴长2b=2
3
的椭圆,由此能求出点Q的轨迹方程.
(Ⅱ)联立
y=kx+
3
x2
4
+
y2
3
=1
,整理,得(4k2+3)x2+8
3
kx=0
,由此利用椭圆弦长公式、点到直线的距离公式,结合已知条件能求出△OAB面积的最大值.
解答: 解:(1)如图,如图,连结QN,
∵l是线段PN的垂直平分线,∴|QP|=|QN|,
∵|MP|=|MQ|+|QP|,∴|MQ|+|NQ|=4,
由椭圆定义知点Q的轨迹是以M(-1,0),N(1,0)为焦点,
长轴长为2a=4,短轴长2b=2
3
的椭圆,
其方程为
x2
4
+
y2
3
=1

(Ⅱ)联立
y=kx+
3
x2
4
+
y2
3
=1
,整理,得(4k2+3)x2+8
3
kx=0

解得x1=0,x2=-
8
3
k
4k2+3

∵k>0,
∴|AB|=
1+k2
|x1-x2|
=
1+k2
•|-
8
3
k
4k2+3
|=
1+k2
8
3
k
4k2+3

原点O到直线l′的距离为d=
3
1+k2

∴S△OAB=
1
2
1+k2
8
3
k
4k2+3
3
1+k2
=
12
4k2+3

=
12
4k+
3
k
12
4
3
=
3

当且仅当4k=
3
k
,即k=
3
2
时,
△OAB面积的最大值为2
3
点评:本题考查点的轨迹方程的求法,考查三角形面积的最大值的求法,解题时要认真审题,注意椭圆弦长公式、点到直线的距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,等腰梯形ABCD中,AD∥BC,AD=
1
2
BC,AB=AD,∠ABC=60°,E是BC的中点,如图2,将△ABE沿AE折起,使面BAE⊥面AECD,连接BC,BD,P是棱BC上的中点.
(1)求证:AE⊥BD;
(2)若AB=2,求三棱锥B-AEP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-4lnx-
1
2
ax2+x,其中a∈R.
(Ⅰ)若a=-
1
2
,求函数f(x)的最小值;
(Ⅱ)设函数g(x)=-
1
3
x3+
1
2
(a+2)x2+2(a+4)x,存在两个整数m、n,使得函数f(x),g(x)在区间(m,n)上都是增函数,求n的最大值,及n取最大值时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.
(Ⅰ)求f(x)与g(x)的解析式;
(Ⅱ)若F(x)=exg(x)-λ[f(x)+x2]在[-2,0]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x(ex-ae-x)(x∈R)是偶函数,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}的前n项和,且a1=-1,S5=15.
(1)求an
(2)令bn=2 an(n=1,2,3,…),计算b1,b2和b3,由此推测数列{bn}是等差数列还是等比数列,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
分数段(分)[50,70)[70,90)[90,110)[110,130)[130,150)总计
频数b
频率a0.25
(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩在[100,120)范围内的学生中随机选2人,求其中恰一人成绩在[100,110)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数f(x)=
ln(x+2)+2
x
,g(x)=
m
x+2

(Ⅰ)若m=3
3
,求函数y=g(x)图象上任意一点P到坐标原点的距离的最小值;
(Ⅱ)是否存在最大的正整数m,使得对任意的正数k,都存在实数a,b满足-2<a<b<k,有f(k)=f(a)=f(b),如果存在,求出最大的正整数m;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设(3
3x
+1)n的展开式中各项系数之和为A,各项的二项式系数之和为B,如A+B=272,则展开式中含x项的系数为
 

查看答案和解析>>

同步练习册答案