分析 利用诱导公式,对函数解析式进行变形,可判断①;根据对称中心之间相差必是$\frac{π}{2}$的整数倍,可判断②;求出函数对称中心的坐标,可判断③;根据x=$\frac{5π}{12}$是函数图象的对称轴,可判断④.
解答 解:∵f(x)=3sin(2x+$\frac{2π}{3}$)=3sin[(2x+$\frac{π}{6}$)+$\frac{π}{2}$]=3cos(2x+$\frac{π}{6}$),故①正确;
若f(x1)=f(x2)=0,则x1-x2必是$\frac{T}{2}$的整数倍,由T=π,可得x1-x2必是$\frac{π}{2}$的整数倍,但不一定是π的整数倍,故②错误;
由2x+$\frac{π}{6}$=$\frac{π}{2}$+kπ,k∈Z得:x=$\frac{π}{6}$+$\frac{1}{2}$kπ,k∈Z,不存在整数k使$\frac{π}{6}$+$\frac{1}{2}$kπ=$\frac{5π}{12}$,故点($\frac{5π}{12}$,0)不是函数图象的对称中心,故③错误;
由2x+$\frac{π}{6}$=kπ,k∈Z得:x=$-\frac{π}{12}$+$\frac{1}{2}$kπ,k∈Z,当k=1时,$\frac{π}{6}$+$\frac{1}{2}$kπ=$\frac{5π}{12}$,x=$\frac{5π}{12}$是函数图象的对称轴,故对所有的x∈R都有f(x+$\frac{5π}{12}$)=f(-x+$\frac{5π}{12}$)成立,故④正确;
故正确的命题是:①④,
故答案为:①④
点评 本题以命题的真假判断为载体,考查三角函数的图象和性质,熟练掌握三角函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com