精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\left\{\begin{array}{l}{2x+1,x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,求f(-1),f(1).

分析 直接利用分段函数化简求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{2x+1,x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,
f(-1)=(-1)2-1=0,
f(1)=2×1+1=3.

点评 本题考查函数值的求法,分段函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=|2x-1|的单调减区间(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=3cos(2x+$\frac{π}{6}$),给出下列四个命题:
①表达式可改写为f(x)=3sin(2x+$\frac{2π}{3}$);
②由f(x1)=f(x2)=0可知x1-x2必是π的整数倍;
③f(x)的图象关于点($\frac{5π}{12}$,0)对称;
④对所有的x∈R都有f(x+$\frac{5π}{12}$)=f(-x+$\frac{5π}{12}$)成立;
其中正确的命题是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.倾斜角为30°的直线l上一点P(2,1),l绕点P按逆时针方向旋转30°得到直线l1,且l1与线段AB的垂直平分线互相平行,其中A(1,m-1)、B(m,2),求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等比数列{an}的各项均为正数,且a1>1,a8+a9>a8a9+1>2.记数列{an}的前n项和为Tn,则满足Tn>1的最大整数n的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在等差数列{an}中,Sn为数列的前n项和.已知Sk-a1=48,Sk-ak=36,Sk-a1-a2-ak-1-ak=21,求此数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.把曲线ycosx+2y-1=0先沿x轴向右平移$\frac{π}{2}$个单位,再沿y轴向下平移1个单位,得到的曲线方程为(y+1)sinx+2y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x||x-$\frac{(a+1)^{2}}{2}$|≤$\frac{(a-1)^{2}}{2}$}与集合B={x|x2-1>|2x+1|},为使A?B成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求经过圆x2+y2=58与直线6x+8y-3=0的交点,且分别满足下列条件的圆的方程:
(1)面积最小的圆;
(2)圆被直线x+y-1=0截得的弦长为3$\sqrt{22}$.

查看答案和解析>>

同步练习册答案