| A. | ?x∈(0,$\frac{π}{2}$),x>sinx | B. | ?x0∈R,sinx0+cosx0=2 | ||
| C. | “?x∈R,3x>0” | D. | ?x0∈R,x0+$\frac{1}{x_0}$=-3 |
分析 利用导数法,可得:?x∈(0,$\frac{π}{2}$),f(x)=x-sinx>0,可判断A;
求出sinx+cosx的取值范围,可判断B;
由指数函数的图象和性质,可判断C;
根据对勾函数的图象和性质,可判断D.
解答 解:令f(x)=x-sinx,则f′(x)=1-cosx≥0恒成立,
由f(0)=0得:?x∈(0,$\frac{π}{2}$),f(x)>0,即x>sinx,故A为真命题;
sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],2∉[-$\sqrt{2}$,$\sqrt{2}$],故B这假命题;
由指数函数的图象和性质,可得“?x∈R,3x>0”,故C为真命题
x0+$\frac{1}{x_0}$∈(-∞,-2]∪[2,+∞),-3∈(-∞,-2]∪[2,+∞),故D为真命题,
故选:B.
点评 本题以命题的真假判断与应用为载体,考查了全称命题和特特命题的判断,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 13 | C. | 14 | D. | 19 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com