精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=4sin2($\frac{π}{4}$+x)-2$\sqrt{3}$cos2x-1,且给定条件p:x<$\frac{π}{4}$或x>$\frac{π}{2}$,x∈R,若条件q:-3<f(x)-m<3,且¬p是q的充分条件,求实数m的取值范围.

分析 先由题意可得在$\frac{π}{4}$≤x≤$\frac{π}{2}$的条件下,得$\left\{\begin{array}{l}{m>f(x)-3}\\{m<f(x)+3}\end{array}\right.$恒成立,再根据两角和与差的公式进行化简,再由x的范围求出2x-$\frac{π}{3}$的范围,再结合正弦函数的性质可求出f(x)的范围,继而得到只需$\left\{\begin{array}{l}{m>5-3}\\{m<3+3}\end{array}\right.$成立,解得即可.

解答 解:由条件q可得$\left\{\begin{array}{l}{m>f(x)-3}\\{m<f(x)+3}\end{array}\right.$,
∵¬p是q的充分条件,
∴在$\frac{π}{4}$≤x≤$\frac{π}{2}$的条件下,得$\left\{\begin{array}{l}{m>f(x)-3}\\{m<f(x)+3}\end{array}\right.$恒成立,
∵f(x)=2[1-cos($\frac{π}{2}$+2x)]-2$\sqrt{3}$cos2x-1
=2sin2x-2$\sqrt{3}$cos2x+1
=4sin(2x-$\frac{π}{3}$)+1.
又∵$\frac{π}{4}$≤x≤$\frac{π}{2}$,
∴$\frac{π}{6}$≤2x-$\frac{π}{3}$≤$\frac{2π}{3}$,
即3≤4sin(2x-$\frac{π}{3}$)+1≤5,即3≤f(x)≤5,
∴只需$\left\{\begin{array}{l}{m>5-3}\\{m<3+3}\end{array}\right.$成立,
即2<m<6,
∴m的取值范围为(2,6)

点评 本题主要考查两角和与差的公式的应用和正弦函数的性质.高考中对三角函数的考查以基础题为主,平时要注意对基础知识的积累和运用的灵活性的锻炼.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,
求①二面角E-AF-D的二面角的余弦值;
   ②在线段PC上是否存在一点H,使得直线BH与平面AEF所成角等于60°,若存在,确定H的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(2,3)、B (-5,2),若直线l过点P (-1,6),且与线段AB相交,则直线l斜率的取值范围是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设A={(x,y)|y=2x+3},B={(x,y)|y=x+1},则A∩B={(-2,-1)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中是假命题的是(  )
A.?x∈(0,$\frac{π}{2}$),x>sinxB.?x0∈R,sinx0+cosx0=2
C.“?x∈R,3x>0”D.?x0∈R,x0+$\frac{1}{x_0}$=-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,求图中三角形(正四面体的截面)的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为(  )
A.-$\frac{7\sqrt{2}}{10}$B.$\frac{7\sqrt{2}}{10}$C.-$\frac{\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.复数z满足(1+2i)•z=|1+2i|,则z的共轭复数$\overrightarrow{z}$的虚部为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z满足(2-i)z=5i(i为虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案