分析 先由题意可得在$\frac{π}{4}$≤x≤$\frac{π}{2}$的条件下,得$\left\{\begin{array}{l}{m>f(x)-3}\\{m<f(x)+3}\end{array}\right.$恒成立,再根据两角和与差的公式进行化简,再由x的范围求出2x-$\frac{π}{3}$的范围,再结合正弦函数的性质可求出f(x)的范围,继而得到只需$\left\{\begin{array}{l}{m>5-3}\\{m<3+3}\end{array}\right.$成立,解得即可.
解答 解:由条件q可得$\left\{\begin{array}{l}{m>f(x)-3}\\{m<f(x)+3}\end{array}\right.$,
∵¬p是q的充分条件,
∴在$\frac{π}{4}$≤x≤$\frac{π}{2}$的条件下,得$\left\{\begin{array}{l}{m>f(x)-3}\\{m<f(x)+3}\end{array}\right.$恒成立,
∵f(x)=2[1-cos($\frac{π}{2}$+2x)]-2$\sqrt{3}$cos2x-1
=2sin2x-2$\sqrt{3}$cos2x+1
=4sin(2x-$\frac{π}{3}$)+1.
又∵$\frac{π}{4}$≤x≤$\frac{π}{2}$,
∴$\frac{π}{6}$≤2x-$\frac{π}{3}$≤$\frac{2π}{3}$,
即3≤4sin(2x-$\frac{π}{3}$)+1≤5,即3≤f(x)≤5,
∴只需$\left\{\begin{array}{l}{m>5-3}\\{m<3+3}\end{array}\right.$成立,
即2<m<6,
∴m的取值范围为(2,6)
点评 本题主要考查两角和与差的公式的应用和正弦函数的性质.高考中对三角函数的考查以基础题为主,平时要注意对基础知识的积累和运用的灵活性的锻炼.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | (-∞,-1]∪[1,+∞) | C. | (-1,1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈(0,$\frac{π}{2}$),x>sinx | B. | ?x0∈R,sinx0+cosx0=2 | ||
| C. | “?x∈R,3x>0” | D. | ?x0∈R,x0+$\frac{1}{x_0}$=-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{7\sqrt{2}}{10}$ | B. | $\frac{7\sqrt{2}}{10}$ | C. | -$\frac{\sqrt{2}}{10}$ | D. | $\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com