精英家教网 > 高中数学 > 题目详情
12.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,求图中三角形(正四面体的截面)的面积.

分析 将截面图转化为立体图,求三角形面积就是求正四面体中的△ABD的面积,求得AD,AC,由勾股定理可得CD,再由三角形的面积公式,计算即可得到所求.

解答 解:如图球的截面图就是正四面体中的△ABD,
已知正四面体棱长为2,
所以AD=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,AC=1,
在直角三角形ACD中,
CD=$\sqrt{A{D}^{2}-A{C}^{2}}$=$\sqrt{3-1}$=$\sqrt{2}$,
可得截面面积是:S△ABD=$\frac{1}{2}$×2×$\sqrt{2}$=$\sqrt{2}$.

点评 本题考查球内接多面体以及棱锥的特征,考查空间想象能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.定义在R上的偶函数f(x),对任意x0∈[0,+∞)总存在正实数d,有$\frac{f({x}_{0}+d)-f({x}_{0})}{d}$<0,则(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若双曲线x2-$\frac{{y}^{2}}{m}$=1的一个焦点与抛物线y2=8x的焦点重合,则m值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{2}$cosx(sinx+cosx).
(Ⅰ)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4sin2($\frac{π}{4}$+x)-2$\sqrt{3}$cos2x-1,且给定条件p:x<$\frac{π}{4}$或x>$\frac{π}{2}$,x∈R,若条件q:-3<f(x)-m<3,且¬p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a<b,则在下列的一段推理过程中,错误的推理步骤有③④.(填上所有错误步骤的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在△ABC中,$\frac{CD}{DA}$=$\frac{AE}{EB}$=$\frac{1}{2}$,记$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,则$\overrightarrow{ED}$=$\frac{\overrightarrow{a}-\overrightarrow{b}}{3}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,小圆圈表示网络结点,结点之间的连线表示它们之间有网线连接,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B发送信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为(  )
A.19B.20C.24D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{a}{x-1}$(a为常数).
(1)若函数y=f(x)在(e,+∞)内有极值,求实数a的取值范围;
(2)在(1)的条件下,若x1∈(0,1),x2∈(1,+∞),求证:f(x2)-f(x1)>e+2-$\frac{1}{e}$.(e为自然对数的底数)

查看答案和解析>>

同步练习册答案