分析 (Ⅰ)根据同角的三角函数关系,求出sinα、cosα的值,再计算f(α)的值;
(Ⅱ)化函数f(x)为正弦型函数,即可求出f(x)的最小正周期和单调减区间.
解答 解:(Ⅰ)∵0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,
∴cosα=$\frac{\sqrt{2}}{2}$,
∴f(α)=$\sqrt{2}$cosα(sinα+cosα)
=$\sqrt{2}$×$\frac{\sqrt{2}}{2}$×($\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$)
=$\sqrt{2}$;…(4分)
(Ⅱ)函数f(x)=$\sqrt{2}$cosx(sinx+cosx)
=$\sqrt{2}$(cosxsinx+cos2x)
=$\frac{\sqrt{2}}{2}$sin2x+$\frac{\sqrt{2}}{2}$cos2x+$\frac{\sqrt{2}}{2}$
=sin(2x+$\frac{π}{4}$)+$\frac{\sqrt{2}}{2}$,…(8分)
∴f(x)的最小正周期为π;
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{3π}{8}$+kπ≤x≤$\frac{π}{8}$+kπ,k∈Z,
∴函数f(x)的单调减区间为[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z.…(12分)
点评 本题考查了三角函数的求值与三角恒等变换问题,也考查了三角函数的图象与性质的应用问题,是综合性题目.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“?x∈R,使得x2+x+1≥0”的否定是“?x∈R,使得x2+x+1≥0” | |
| B. | 实数x>y是x2>y2成立的充要条件 | |
| C. | 设p,q为简单命题,若“p∨q”为假命题,则“¬p∧¬q”也为假命题 | |
| D. | 命题“若cosα≠1,则α≠0”为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α⊥β,m∥α,则m⊥β | B. | 若m?α,n?β,且m⊥n,则α⊥β | ||
| C. | 若α∥β,β∥λ,则α∥λ | D. | 若m∥α,n∥α,则m∥n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com