精英家教网 > 高中数学 > 题目详情
10.设m,n是不同的直线,α,β,γ是不同的平面,则下列命题中真命题的是(  )
A.若α⊥β,m∥α,则m⊥βB.若m?α,n?β,且m⊥n,则α⊥β
C.若α∥β,β∥λ,则α∥λD.若m∥α,n∥α,则m∥n

分析 对四个命题,分别进行判断,即可得出结论.

解答 解:对于A,若α⊥β,m∥α,则m⊥β或m?β,不正确;
对于B,若m?α,n?β,且m⊥n,则α∥β,也有可能,不正确;
对于C,利用平面与平面的性质,可得结论,正确;
对于D,平行于同一平面的两直线可平行、相交和异面,不正确.
故选:C.

点评 本题为基础题,考查了空间线面的平行和垂直关系,借助具体的模型培养空间想象力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{2}$cosx(sinx+cosx).
(Ⅰ)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,小圆圈表示网络结点,结点之间的连线表示它们之间有网线连接,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B发送信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为(  )
A.19B.20C.24D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cosB=$\frac{2\sqrt{5}}{5}$,tanC=$\frac{1}{3}$.
(Ⅰ)求tanA;    
(Ⅱ)若c=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设F为抛物线y2=4x的焦点,A是抛物线上一点,B(-3,-3),设点A到y轴的距离为m,则m+|AB|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正项数列{an}的奇数项a1,a3,a5,…a2k-1,…构成首项a1=1等差数列,偶数项构成公比q=2的等比数列,且a1,a2,a3成等比数列,a4,a5,a7成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{a}{x-1}$(a为常数).
(1)若函数y=f(x)在(e,+∞)内有极值,求实数a的取值范围;
(2)在(1)的条件下,若x1∈(0,1),x2∈(1,+∞),求证:f(x2)-f(x1)>e+2-$\frac{1}{e}$.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}-1,x<1}\\{-{{log}_2}x,x≥1}\end{array}}$.
(1)在图中画出该函数的图象;
(2)写出函数f(x)的值域、单调区间及零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列An:a1,a2,…an(n∈N*,n≥2)满足a1=an=0,当2≤k≤n(k∈N*)时,(ak-ak-12=1,令S(An)=$\sum_{i=1}^{n}$ai
(1)直接写出S(A5)的所有可能的值;
(2)求证:S(A2k+1)的最大值为k2,其中k∈N*
(3)记S(An)的所有可能的值构成的集合为Гn,若0∈Гn,求出n(n≥2)的所有取值构成的集合.

查看答案和解析>>

同步练习册答案