精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=lnx+$\frac{a}{x-1}$(a为常数).
(1)若函数y=f(x)在(e,+∞)内有极值,求实数a的取值范围;
(2)在(1)的条件下,若x1∈(0,1),x2∈(1,+∞),求证:f(x2)-f(x1)>e+2-$\frac{1}{e}$.(e为自然对数的底数)

分析 (1)若函数f(x)在(e,+∞)内有极值,f′(x)=0有不等的实根,其中至少一个在(e,+∞)内,令φ(x)=x2-(2+a)x+1=(x-α)(x-β),可得αβ=1,β>e.即可求实数a的取值范围;
(2)确定函数f(x)在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减,可得f(x2)-f(x1)≥f(β)-f(α),再构造函数,即可证明结论.

解答 解:(1)∵f′(x)=$\frac{{x}^{2}-(2+a)x+1}{{x(x-1)}^{2}}$,函数f(x)在(e,+∞)内有极值,
∴f′(x)=0有不等的实根,其中至少一个在区间(e,+∞)内,
令φ(x)=x2-(2+a)x+1=(x-α)(x-β),可得αβ=1.
不妨设β>α,则α∈(0,1),β∈(1,+∞),
∴β>e.
∴φ(0)=1>0,
∴φ(e)=e2-(2+a)e+1<0,
∴a>e+$\frac{1}{e}$-2,
即实数a的取值范围是(e+$\frac{1}{e}$-2,+∞);
证明:(2)由上知,f′(x)>0,可得0<x<α或x>β;f′(x)<0,可得α<x<1或1<x<β,
∴函数f(x)在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减,
由x1∈(0,1),得f(x1)≤f(α)=lnα+$\frac{α}{α-1}$,
x2∈(1,+∞),得f(x2)≥f(β)=lnβ+$\frac{β}{β-1}$,
∴f(x2)-f(x1)≥f(β)-f(α)
又αβ=1,α+β=a+2,β>e
∴f(β)-f(α)=lnβ+$\frac{β}{β-1}$-(lnα+$\frac{α}{α-1}$)=2lnβ+β-$\frac{1}{β}$,
令H(β)=2lnβ+β-$\frac{1}{β}$(β>e),
则H′(β)=($\frac{1}{β}$+1)2>0,
∴H(β)在(e,+∞)上单调递增,
∴H(β)>H(e)=e+2-$\frac{1}{e}$,
∴f(x2)-f(x1)>e+2-$\frac{1}{e}$.

点评 本题考查导数知识的综合运用,考查导数的几何意义,考查不等式的证明,考查函数的单调性,正确求导,确定函数的单调性是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,求图中三角形(正四面体的截面)的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数y=ln($\sqrt{1+a{x}^{2}}$-2x)为奇函数,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m,n是不同的直线,α,β,γ是不同的平面,则下列命题中真命题的是(  )
A.若α⊥β,m∥α,则m⊥βB.若m?α,n?β,且m⊥n,则α⊥β
C.若α∥β,β∥λ,则α∥λD.若m∥α,n∥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z满足(2-i)z=5i(i为虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a、b、c分别为角A、B、C所对的边,且(a2+b2-c2)tanC=$\sqrt{2}$ab.
(1)求角C的大小;
(2)若c=2,b=2$\sqrt{2}$,求边a的值及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“有些实数的绝对值是正数”的否定是所有实数的绝对值不是正数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.由正数组成的集合A具有如下性质:若a∈A,b∈A且a<b,那么1+$\frac{a}{b}$∈A.
(1)试问集合A能否恰有两个元素且$\frac{4}{3}$∈A?若能,求出所有满足条件的集合A;若不能,请说明理由.
(2)试问集合A能否恰有三个元素?若能,请写出一个这样的集合A;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如表是关于出生男婴与女婴调查的列联表,那么A=53,B=35,C=100,D=82.
晚上白天总计
男婴45B
女婴A47C
总计98D180

查看答案和解析>>

同步练习册答案