精英家教网 > 高中数学 > 题目详情
14.命题“有些实数的绝对值是正数”的否定是所有实数的绝对值不是正数.

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,
所以命题“有些实数的绝对值是正数”的否定是:所有实数的绝对值不是正数.
故答案为:所有实数的绝对值不是正数.

点评 本题考查命题的否定,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如图,在△ABC中,$\frac{CD}{DA}$=$\frac{AE}{EB}$=$\frac{1}{2}$,记$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,则$\overrightarrow{ED}$=$\frac{\overrightarrow{a}-\overrightarrow{b}}{3}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设F为抛物线y2=4x的焦点,A是抛物线上一点,B(-3,-3),设点A到y轴的距离为m,则m+|AB|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{a}{x-1}$(a为常数).
(1)若函数y=f(x)在(e,+∞)内有极值,求实数a的取值范围;
(2)在(1)的条件下,若x1∈(0,1),x2∈(1,+∞),求证:f(x2)-f(x1)>e+2-$\frac{1}{e}$.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列关于算法的说法,正确的序号是(2)、(3)、(4).
(1)一个问题的算法是唯一的;
(2)算法的操作步骤是有限的;
(3)算法的每一步操作必须是明确的,不能有歧义;
(4)算法执行后一定产生确定的结果.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}-1,x<1}\\{-{{log}_2}x,x≥1}\end{array}}$.
(1)在图中画出该函数的图象;
(2)写出函数f(x)的值域、单调区间及零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.双曲线过点(4,$\sqrt{3}$)、(3,$\frac{{\sqrt{5}}}{2}$),则双曲线的标准方程为$\frac{x^2}{4}-{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在平面直角坐标系xOy中曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ.\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t.\end{array}\right.$(t为参数),曲线C与直线l相交于点A,B,且定点P的坐标为(1,0).
(Ⅰ)求曲线C的普通方程;
(Ⅱ)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直角△ABC的顶点坐标A(-3,0),直角顶点B(-1,-2$\sqrt{2}$),顶点C在x轴上.
(Ⅰ)求边BC所在的直线的方程;
(Ⅱ)求直角△ABC的斜边中线所在的直线的方程及斜边中线的长度.

查看答案和解析>>

同步练习册答案