精英家教网 > 高中数学 > 题目详情
3.已知在平面直角坐标系xOy中曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ.\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t.\end{array}\right.$(t为参数),曲线C与直线l相交于点A,B,且定点P的坐标为(1,0).
(Ⅰ)求曲线C的普通方程;
(Ⅱ)求|PA|•|PB|的值.

分析 (I)利用同角三角函数的关系消参数θ得出普通方程;
(II)把直线的参数方程代入曲线C的普通方程,利用根与系数的关系和参数的几何意义得出.

解答 解:(Ⅰ)曲线C的普通方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(Ⅱ)把$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)代入$\frac{x^2}{4}+\frac{y^2}{3}=1$得$3{(1+\frac{1}{2}t)^2}+4{(\frac{{\sqrt{3}}}{2}t)^2}=12$,
化简得:5t2+4t-12=0,
设A,B对应的参数分别为t1,t2,则t1t2=-$\frac{12}{5}$,
∴|PA|•|PB|=|t1t2|=$\frac{12}{5}$.

点评 本题考查了参数方程与普通方程的转化,参数的几何意义及应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若函数y=ln($\sqrt{1+a{x}^{2}}$-2x)为奇函数,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“有些实数的绝对值是正数”的否定是所有实数的绝对值不是正数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.由正数组成的集合A具有如下性质:若a∈A,b∈A且a<b,那么1+$\frac{a}{b}$∈A.
(1)试问集合A能否恰有两个元素且$\frac{4}{3}$∈A?若能,求出所有满足条件的集合A;若不能,请说明理由.
(2)试问集合A能否恰有三个元素?若能,请写出一个这样的集合A;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x≥0,y≥0,x2+y2=4,μ=x•y-4(x+y)+10,μ的最值情况是(  )
A.有最大值2,最小值2(2-$\sqrt{2}$)2B.有最大值2,最小值0
C.有最大值10,最小值2(2-$\sqrt{2}$)2D.最值不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.计算机是将信息转换成二进制进行处理的,二进制即“逢二进一”,如(1 101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13,那么将二进制数($\underset{\underbrace{11…1}}{14个}$01)2转换成十进制数是(  )
A.216-1B.216-2C.216-3D.216-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)是定义在R上的奇函数,且x>0时,f(x)=x2+1,则f(0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如表是关于出生男婴与女婴调查的列联表,那么A=53,B=35,C=100,D=82.
晚上白天总计
男婴45B
女婴A47C
总计98D180

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知如图:

则a81的位置是(  )
A.第13行第2个数B.第14行第3个数C.第13行第3个数D.第17行第2个数

查看答案和解析>>

同步练习册答案