精英家教网 > 高中数学 > 题目详情
20.在平面直角坐标系xOy中,抛物线y=x2异于坐标原点O的两个不同动点A、B,满足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则△ABC的重心G的轨迹的普通方程为$y=3{x}^{2}+\frac{2}{3}$.

分析 设出AB的方程,A,B的坐标,进而把直线与抛物线方程联立消去y,根据韦达定理求得x1+x2和x1x2的表达式,进而利用抛物线方程求得y1y2=的表达式,进而根据AO⊥BO推断出x1x2+y1y2=0,求得b,设△AOB的重心为G(x,y),则x和y的表达式可得,联立后消去k则x和y的关系式可得.

解答 解:显然直线AB的斜率存在,记为k,AB的方程记为:y=kx+b,(b≠0),A(x1,y1),B(x2,y2),将直线方程代入y=x2得:x2-kx-b=0,则有:
△=k2+4b>0①,x1+x2=k②,x1x2=-b③,又y1=x12,y2=x22
∴y1y2=b2
∵AO⊥BO,∴x1x2+y1y2=0,
得:-b+b2=0且b≠0,
∴b=1,代入①验证,满足;
故y1+y2=k(x1+x2)+2=k2+2;
设△AOB的重心为G(x,y),
则x=$\frac{{x}_{1}+{x}_{2}}{3}$=$\frac{k}{3}$④,y=$\frac{{y}_{1}+{y}_{2}}{3}$=$\frac{{k}^{2}+2}{3}$⑤,
由④⑤两式消去参数k得:G的轨迹方程为$y=3{x}^{2}+\frac{2}{3}$.
故答案为:$y=3{x}^{2}+\frac{2}{3}$.

点评 本题主要考查了抛物线的简单性质.上述求轨迹的方法称为“参数法”,一般先设法将动点坐标用“参数”表示,再消参数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若a是函数f(x)=3x-log${\;}_{\frac{1}{3}}$x的零点,且f(b)<0,则(  )
A.0<b<aB.0<a<bC.a=bD.a≤b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在四面体A-BCD中,棱长为4,M是BC的中点,点P在线段AM上运动,(点P不与A,M重合),过点P做直线l⊥平面ABC,l与平面BCD交于点Q.给出下列命题,其中正确的是①②
①BC⊥平面AMD
②点Q一定在直线DM上
③VC-AMD=4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在递减数列{an}中,an=-2n2+λn,求实数λ的取值范围是(  )
A.(-∞,2)B.(-∞,3)C.(-∞,4)D.(-∞,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=tan(2x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一个对称中心为($\frac{π}{3}$,0),则φ的值是(  )
A.-$\frac{π}{6}$B.$\frac{π}{3}$C.-$\frac{π}{3}$D.-$\frac{π}{6}$或$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,
求①二面角E-AF-D的二面角的余弦值;
   ②在线段PC上是否存在一点H,使得直线BH与平面AEF所成角等于60°,若存在,确定H的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知二次函数f(x)=2x2+1,过点(1,0)做直线l1,l2与f(x)的图象相切于A,B两点,则直线AB的方程为(  )
A.$\sqrt{6}$x-y+2=0B.x-$\sqrt{6}$y+1=0C.4x-y+2=0D.x-4y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A(xA,yA)是单位圆上(圆心在坐标原点O)任意一点,且射线OA绕O点逆时针旋转30°到OB交单位圆于点B(xB,yB),则xA-yB的最大值为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中是假命题的是(  )
A.?x∈(0,$\frac{π}{2}$),x>sinxB.?x0∈R,sinx0+cosx0=2
C.“?x∈R,3x>0”D.?x0∈R,x0+$\frac{1}{x_0}$=-3

查看答案和解析>>

同步练习册答案