精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)短轴的两个顶点与右焦点的连线构成等边三角形,且直线与圆相切.

1)求椭圆的方程;

2)若直线都经过椭圆的左顶点,与椭圆分别交于两点,且.求证:直线过定点,并求出该定点坐标.

【答案】12)证明见解析;定点

【解析】

1)根据椭圆短轴的两个顶点与右焦点的连线构成等边三角形,直线与圆相切,建立方程组,求出,即可求椭圆的方程;

2)设直线的方程为:,则,联立直线与椭圆方程,消元列出韦达定理,整理得:,从而求出直线过定点坐标;

解:(1)由题意,

① ②得:,所以椭圆的方程为:

2)显然直线轴不平行,

设直线的方程为:

所以.

因为

所以

整理得:

所以直线的方程为:,即直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若存在实数,使得等式对于定义域内的任意实数均成立,则称函数为“可平衡”函数,有序数对称为函数的“平衡”数对.

(1)若,判断是否为“可平衡”函数,并说明理由;

(2)若,均为的“可平衡”数对,当时,方程有两个不相等的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足

1)将利润表示为产量万台的函数;

2)当产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求曲线在点处的切线方程

2求证:存在唯一的,使得曲线在点处的切线的斜率为

3比较的大小并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:方程表示焦点在y轴上的椭圆,其离心率的范围是

命题q:某人射击,每枪中靶的概率为,他连续射击两枪至少有一枪中靶的概率超过,若复合命题:非p为真,p或q为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数).

(1)若函数与函数处有相同的切线,求实数的值;

2)若,且,证明:

3)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形和矩形所在的平面互相垂直,是线段的中点.

(1)求证:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为的函数满足,若,且,则().

A. B.

C. D. 的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现要完成下列三项抽样调查:罐奶粉中抽取罐进行食品安全卫生检查;高二年级有名学生,为调查学生的学习情况抽取一个容量为的样本;从某社区户高收入家庭,户中等收入家庭,户低收入家庭中选出户进行消费水平调查.以下各调查方法较为合理的是(

A.系统抽样,简单随机抽样,分层抽样

B.简单随机抽样,分层抽样,系统抽样

C.分层抽样,系统抽样,简单随机抽样

D.简单随机抽样,系统抽样,分层抽样

查看答案和解析>>

同步练习册答案