精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=-$\sqrt{3}$sin2x+sinxcosx.
(1)求f($\frac{π}{6}$)的值;
(2)求函数f(x)的最小正周期及最大值.
(3)求函数f(x)的单调递增区间.

分析 利用和角公式,以及二倍角公式,化简函数为一个角的一个三角函数的形式,
(1)将x=$\frac{π}{6}$代入可得f($\frac{π}{6}$)的值;
(2)根据A=1,ω=2,B=-$\frac{\sqrt{3}}{2}$,可得函数f(x)的最小正周期及最大值.
(3)利用y=sinx的单调增区间,求出f(x)的单调增区间.

解答 解:∵函数f(x)=-$\sqrt{3}$sin2x+sinxcosx=$-\frac{\sqrt{3}}{2}$(1-cos2x)+$\frac{1}{2}$sin2x=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$=sin(2x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$.
(1)当x=$\frac{π}{6}$时,f($\frac{π}{6}$)=sin(2×$\frac{π}{6}$+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$=sin$\frac{2π}{3}$-$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$=0;
(2)∵A=1,ω=2,B=-$\frac{\sqrt{3}}{2}$,
故函数f(x)的最小正周期为π,
最大值为1-$\frac{\sqrt{3}}{2}$.
(3)由2x+$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z得:
2x∈[2kπ-$\frac{5π}{6}$,2kπ+$\frac{π}{6}$],k∈Z,
即x∈[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,
即函数f(x)的单调递增区间为:[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,

点评 本题考查三角函数的周期性及其求法,正弦函数的定义域和值域,正弦函数的单调性,考查计算能力,逻辑思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知数列{an}是递增数列,且an=$\left\{{\begin{array}{l}{(λ-1)n+5}\\{{{(3-λ)}^{n-4}}+5}\end{array}}\right.\begin{array}{l}{(n≤4)}\\{(n>4)}\end{array}$(n∈N*),则λ的取值范围为(  )
A.(1,2)B.(1,$\frac{5}{4}$]C.(1,$\frac{5}{4}$)D.(1,$\frac{7}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设正实数x,y,z满足x2-xy+4y2-z=0.则当$\frac{z}{xy}$取得最小值时,x+4y-z的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某校本学期迎来了某师范大学数学系甲、乙、丙、丁共4名实习教师,若将这4名实习教师分配到高一年级编号为1,2,3,4的4个班级实习,每班安排1名实习教师,且甲教师要安排在1班或2班,则不同的分配方案有(  )
A.6种B.9种C.12种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(x-1)3+(x-1)4的展开式中含x2项的系数等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.统计某校1000名学生的数学水平测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是80%.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知角α是钝角,且sinα=$\frac{3}{5}$.求cosα、tanα和cos2α+sin(π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某中学生物研究性学习小组对春季昼夜温差大小与水稻发芽率之间的关系进行研究,记录了实验室4月10日至4月14日的每天昼夜温差与每天每50颗稻籽浸泡后的发芽数,得到如下资料:
日    期4月10日4月11日4月12日4月13日4月14日
温  差x(℃)1012131411
发芽数y(颗)1113141612
(1)求这5天的发芽数的方差;
(2)根据表中的数据可知发芽数y(颗)与温差x(℃)呈线性相关,请求出发芽数y关于温差x的线性回归方程$\widehat{y}$=bx+$\widehat{a}$.
(3)若4月15日的温差为15℃,试用(2)中的回归方程估测当天50颗稻籽浸泡后的发芽数.(精确到整数部分)
(参考公式:回归直线方程式=bx+$\widehat{a}$.其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\overline{a}=\overline{y}-b\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.程序框图如图所示,若输入a的值是虚数单位i,则输出的结果是-1.

查看答案和解析>>

同步练习册答案