精英家教网 > 高中数学 > 题目详情
1.已知$\overrightarrow{a}$=(2,k),$\overrightarrow{b}$=(k-1,k(k+1)),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k的值为-3或0.

分析 直接利用向量共线的充要条件列出方程求解即可.

解答 解:$\overrightarrow{a}$=(2,k),$\overrightarrow{b}$=(k-1,k(k+1)),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
可得:2k(k+1)=k•k-k,解得k=-3或0.
故答案为:-3或0.

点评 本题考查向量共线的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若复数z=$\frac{a-i}{1-i}$是纯虚数(i是虚数单位),则实数a的值为(  )
A.$-\sqrt{2}$B.-1C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知双曲线的中心在坐标原点O,焦点分别是F1(-2,0),F2(2,0),且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2.
(1)求该双曲线的标准方程、离心率及渐近线方程;
(2)若直线l经过双曲线的右焦点F2,并与双曲线交于M,N两点,向量$\overrightarrow{n}$=(2,-1)是直线l的法向量,点P是双曲线左支上的一个动点,求△PMN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1、F2是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点,P是双曲线右支上一点,点E是线段PF1中点,且$\overrightarrow{OE}$•$\overrightarrow{{F_1}P}$=0,sin∠PF2F1≥2sin∠PF1F2,则双曲线离心率的取值范围是(  )
A.[5,+∞)B.[$\sqrt{5}$,+∞)C.(1,5]D.(1,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面直角坐标系中,点P是由不等式组$\left\{\begin{array}{l}{2x-y+1≥0}\\{x+y-1≥0}\\{3x+y-3≤0}\end{array}\right.$所确定的平面区域内的动点,Q是直线3x+y=0上任意一点,O为坐标原点,则|$\overrightarrow{OP}$-$\overrightarrow{OQ}$|的最小值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{2}}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.2015年7月,“国务院关于积极推进“‘互联网+’行动的指导意见”正式公布,在“互联网+”的大潮下,我市某高中“微课堂”引入教学,某高三教学教师录制了“导数的应用”与“概率的应用”两个单元的微课视频放在所教两个班级(A班和B班)的网页上,A班(实验班,基础较好)共有学生50人,B班(普通班,基础较差)共有学生60人,该教师规定两个班的每一名同学必须在某一天观看其中一个单元的微课视频,第二天经过统计,A班有30人观看了“导数的应用”视频,其他20人观看了“概率的应用”视频,B班有25人观看了“导数的应用”视频,其他35人观看了“概率的应用”视频.
(1)完成下列2×2列联表:
 观看“导数的应用”
视频人数
观看“概率的应用”
视频人数
总计
A班   
B班   
总计   
判断是否有95%的把握认为学生选择两个视频中的哪个与班级有关?
(2)在A班中用分层抽样的方法抽取5人进行学习效果调查;
①求抽取的5人中观看“导数的应用”视频的人数及观看“概率的应用”视频的人数;
②在抽取的5人中抽取2人,求这2人中至少有一个观看“概率的应用”视频的概率;
参考公式:k2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
参考数据:
P(x2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}满足:a1+a4+a7=2π,则tan(a2+a6)的值为(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前6项依次构成一个公差为整数的等差数列,且从第5项起依次构成一个等比数列,若a1=-3,a7=4.
(I)求数列{an}的通项公式;
(Ⅱ)设Sn是数列{an}的前n项和,求使Sn>2016成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,△ABC的顶点坐标分别为A(-3,0),B(9,5),C(3,9),直线l过点C且把三角形的面积分为1:1的两部分,则l的方程是5x-12y+93=0.

查看答案和解析>>

同步练习册答案