精英家教网 > 高中数学 > 题目详情
16.在平面直角坐标系中,点P是由不等式组$\left\{\begin{array}{l}{2x-y+1≥0}\\{x+y-1≥0}\\{3x+y-3≤0}\end{array}\right.$所确定的平面区域内的动点,Q是直线3x+y=0上任意一点,O为坐标原点,则|$\overrightarrow{OP}$-$\overrightarrow{OQ}$|的最小值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{2}}{2}$D.3

分析 分别作出不等式组表示的平面区域和直线3x+y=0,通过图象观察,求得A(0,1)到直线的距离,即可得到所求最小值.

解答 解:画出不等式组$\left\{\begin{array}{l}{2x-y+1≥0}\\{x+y-1≥0}\\{3x+y-3≤0}\end{array}\right.$所确定的平面区域,
直线3x+y=0,
则|$\overrightarrow{OP}$-$\overrightarrow{OQ}$|=|$\overrightarrow{PQ}$|,
由A(0,1)到直线3x+y=0的距离为d=$\frac{|0+1|}{\sqrt{9+1}}$=$\frac{\sqrt{10}}{10}$,
可得|$\overrightarrow{OP}$-$\overrightarrow{OQ}$|的最小值为$\frac{\sqrt{10}}{10}$,
故选:A.

点评 本题考查两点的距离的最小值的求法,注意运用数形结合的思想方法,考查点到直线的距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.(1)如果三角形的边长a、b、c满足等式a2+b2+c2=ab+bc+ca,求证:此三角形一定是正三角形;
(2)若a、b、c、$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$皆为有理数,证明:$\sqrt{a}$、$\sqrt{b}$、$\sqrt{c}$为有理数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知i为虚数单位,复数$\frac{2+4i}{1+i}$=3+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,(x>0)}\\{lo{g}_{\frac{1}{2}}(-x),(x<0)}\end{array}\right.$,若f(a)>f(-a)+2,则实数a的取值范围是(  )
A.(-$\frac{1}{2}$,0)∪(0,2)B.(-∞,-$\frac{1}{2}$)∪(2,+∞)C.(-$\frac{1}{2}$,0)∪(2,+∞)D.(-∞,-$\frac{1}{2}$)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)是定义域为R的具有周期2π的奇函数,且f(3)=f(4)=0,则f(x)在区间[0,8]中至少有7个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$=(2,k),$\overrightarrow{b}$=(k-1,k(k+1)),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k的值为-3或0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列4个命题,其中正确命题的个数是(  )
①计算:9192除以100的余数是1;
②命题“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”;
③y=tanax(a>0)在其定义域内是单调函数而且又是奇函数;
④命题p:“|a|+|b|≤1”是命题q:“对任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要条件.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在数列{an}中,已知a2=1,an+2+(-1)n-1an=2,记Sn是数列{an}的前n项和,则S80=(  )
A.1640B.1680C.3240D.1600

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据条件,求下列方程的解集:
(1)cos(x+$\frac{π}{4}$)=$\frac{1}{2}$,x∈(0,2π);
(2)3tan(x+$\frac{π}{3}$)=$\sqrt{3}$,x∈(0,π);
(3)2sin2x-1=0,x∈(0,$\frac{π}{2}$);
(4)2sin(5x-$\frac{π}{12}$)-$\sqrt{3}$=0(x为锐角).

查看答案和解析>>

同步练习册答案