| A. | (-$\frac{1}{2}$,0)∪(0,2) | B. | (-∞,-$\frac{1}{2}$)∪(2,+∞) | C. | (-$\frac{1}{2}$,0)∪(2,+∞) | D. | (-∞,-$\frac{1}{2}$)∪(0,2) |
分析 根据已知中函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,(x>0)}\\{lo{g}_{\frac{1}{2}}(-x),(x<0)}\end{array}\right.$,结合对数的运算性质,分类讨论满足f(a)>f(-a)+2的a值范围,综合可得答案.
解答 解:若a>0,则f(a)>f(-a)+2可化为:${log}_{2}a>{log}_{\frac{1}{2}}a+2$,
即log2a>1,
解得:a>2,
若a<0,则f(a)>f(-a)+2可化为:${log}_{\frac{1}{2}}(-a)>{log}_{2}(-a)+2$,
即${log}_{\frac{1}{2}}(-a)>1$,
解得:$-\frac{1}{2}$<a<0,
综上实数a的取值范围是(-$\frac{1}{2}$,0)∪(2,+∞),
故选:C
点评 本题考查的知识点是分段函数的应用,对数函数的图象和性质,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$x±y=0 | B. | x±$\sqrt{3}$y=0 | C. | x±$\sqrt{2}$y=0 | D. | $\sqrt{3}$x±y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [5,+∞) | B. | [$\sqrt{5}$,+∞) | C. | (1,5] | D. | (1,$\sqrt{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{3\sqrt{10}}{10}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com