精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求a,b
(2)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(3)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的极值
专题:综合题,导数的综合应用
分析:(1)利用极值的意义,建立方程,即可求a,b;
(2)确定函数的单调性,即可判断f(1)和f(-1)是函数f(x)的极大值还是极小值;
(3)设切点坐标.利用导数的几何意义求切线方程,然后利用切线过原点,确定切点坐标即可.
解答: 解:(1)f'(x)=3ax2+2bx-3,
依题意,f'(1)=f'(-1)=0,即
3a+2b-3=0
3a-2b-3=0.

解得a=1,b=0.
(2)f(x)=x3-3x,f'(x)=3x2-3=3(x+1)(x-1).
令f'(x)=0,得x=-1,x=1.
若x∈(-∞,-1)∪(1,+∞),则f'(x)>0,故f(x)在(-∞,-1)上是增函数,f(x)在(1,+∞)上是增函数.
若x∈(-1,1),则f'(x)<0,故f(x)在(-1,1)上是减函数.
所以,f(-1)=2是极大值;f(1)=-2是极小值.
(3)曲线方程为y=x3-3x,点A(0,16)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=
x
3
0
-3x0

f′(x0)=3(
x
2
0
-1)
,故切线的方程为y-y0=3(
x
2
0
-1)(x-x0)

注意到点A(0,16)在切线上,有16-(
x
3
0
-3x0)=3(
x
2
0
-1)(0-x0)
化简得
x
3
0
=-8
,解得x0=-2.
所以,切点为M(-2,-2),切线方程为9x-y+16=0.
点评:本题主要考查函数的单调性与极值,考查导数的几何意义,要注意过点的切线和在点处的切线的不同.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设ω∈(0,10],则函数y=sinωx在区间(-
π
3
π
6
)上是增函数的概率是(  )
A、
π
20
B、
3
10
C、
1
9
D、
3
20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C所对的边分别为a,b,c且满足sinA(
3
cosA+sinA)=
3
2

(Ⅰ)求角A;
(Ⅱ)若a=2
2
,求△ABC面积S△ABC最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为一矩形宣传单,其中矩形ABCD为排版区域,它的左右两边都留有宽为acm的空白,顶部和底部都留有宽为2acm的空白.
(1)若AB=20cm,BC=30cm,且该宣传单的面积不超过1000cm2,求实数a的取值范围;
(2)若a=1cm,排版区域ABCD的面积为800cm2,应如何设计矩形ABCD的尺寸,才能使矩形宣传单的面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其中a2=6,
an+1+an-1
an+1-an+1
=n.
(1)求a1,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点C在直线3x-y=0上,顶点A、B的坐标分别为(4,2),(0,5).
(Ⅰ)求过点A且在x,y轴上的截距相等的直线方程;
(Ⅱ)若△ABC的面积为10,求顶点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

对吉安市某重点高中男女同学是否喜欢物理进行了一个调查,调查者随机调查了146名学生,下表给出了部分调查结果:
喜欢物理情况
学生
喜欢 不喜欢 总计
男同学 46 b 76
女同学 c d e
总计 f 80 n=146
(1)根据以上数据,求出上述2×2联表中b,c,d,e,f;
(2)试问是否有99%以上把握认为男女同学喜欢物理的程度有差异?
参考公式:x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d)
x2≤2.706 x2>2.706 x2>3.841 x2>6.635
是否有关联 没有关联 90% 95% 99%

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23;
②一组有六个数的数据是1,2,3,3,4,5的平均数、众数、中位数都相同;
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=2,
.
x
=1,
.
y
=3,则a=1;
其中正确的命题有
 
(请填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若随机变量X~B(3,
1
2
),则P(X=2)=
 

查看答案和解析>>

同步练习册答案