精英家教网 > 高中数学 > 题目详情
8.若把函数f(x)=sinx的图象向左平移φ(φ>0)个单位,再把所得图象的横坐标变为原来的$\frac{1}{4}$,纵坐标保持不变,得到函数图象C1;把函数f(x)=sinx的图象的横坐标变为原来的$\frac{1}{4}$,纵坐标保持不变,再把所得图象向左平移φ(φ>0)个单位,得到函数图象C2.若图象C1与C2重合,则φ的最小值为$\frac{2π}{3}$.

分析 由题意利用函数y=Asin(ωx+φ)的图象变换规律、诱导公式,求得φ的最小值.

解答 解:把函数f(x)=sinx的图象向左平移φ(φ>0)个单位,可得y=sin(x+φ)的图象;
再把所得图象的横坐标变为原来的$\frac{1}{4}$,纵坐标保持不变,得到函数C1:y=sin(4x+φ)的图象.
把函数f(x)=sinx的图象的横坐标变为原来的$\frac{1}{4}$,纵坐标保持不变,可得y=sin4x的图象;
再把所得图象向左平移φ(φ>0)个单位,得到函数C2:y=sin(4x+4φ)的图象;
若图象C1与C2重合,则2kπ+φ=4φ,k∈Z,即φ=$\frac{2kπ}{3}$,故当k=1时,φ取得最小值为$\frac{2π}{3}$,
故答案为:$\frac{2π}{3}$.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律、诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=log2(x+2)的定义域是(  )
A.[2,+∞)B.[-2,+∞)C.(-2,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.学校要安排6名实习老师到3个不同班级实习,每班需要2名实习老师,则甲、乙两名老师在同一个班且丙、丁两名老师不在同一个班的概率为(  )
A.$\frac{2}{45}$B.$\frac{1}{15}$C.$\frac{2}{15}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A.$\frac{511}{256}$B.$\frac{255}{128}$C.$\frac{127}{64}$D.$\frac{63}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在复平面上,一个正方形的三个顶点对应的复数分别是-1-2i、2-i、0,那么这个正方形的第四个顶点对应的复数为(  )
A.3+iB.3-iC.1-3iD.-1+3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且b2+ac=a2+c2,则∠B 的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|<π),在同一周期内,当x=$\frac{π}{12}$时,f(x)取得最大值3;当x=$\frac{7}{12}$π时,f(x)取得最小值-3.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若x∈[-$\frac{π}{3}$,$\frac{π}{6}$]时,方程2f(x)+1-m=0有两个根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求过点A$({2,\frac{π}{4}})$且平行于极轴的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(Ⅰ)设a=2,$b=\frac{1}{2}$,求方程f(x)=2的根;
(Ⅱ)当a=$\frac{1}{2}$,b=2时,若对于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求实数m的最大值.

查看答案和解析>>

同步练习册答案