一车间生产A, B, C三种样式的LED节能灯,每种样式均有10W和30W两种型号,某天的产量如右表(单位:个)。按样式分层抽样的方法在这个月生产的灯泡中抽取100个,其中有A样式灯泡25个.
型号 | A样式 | B样式 | C样式 |
10W | 2000 | z | 3000 |
30W | 3000 | 4500 | 5000 |
(1)z=2500 (2)
解析试题分析:解: (1).设该厂本月生产的B样式的灯泡为n个,在C样式的灯泡中抽取x个,由题意得,
,所以x=40. 2分
则100-40-25=35,所以,
n=7000,
故z=2500 6分
(2) 设所抽样本中有m个10W的灯泡,
因为用分层抽样的方法在A样式灯泡中抽取一个容量为5的样本,
所以,解得m=2 8分
也就是抽取了2个10W的灯泡,3个30W的灯泡,
分别记作S1,S2;B1,B2,B3,则从中任取2个的所有基本事件为
(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)
共10个, 10分
其中至少有1个10W的灯泡的基本事件有7个基本事件:
(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),所以从中任取2个,
至少有1个10W的灯泡的概率为. 12分
考点:统计和概率的综合
点评:解决的关键是理解频率和概率,并能结合古典概型概率公式求解,属于基础题。
科目:高中数学 来源: 题型:解答题
为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:
| 关注NBA | 不关注NBA | 合 计 |
男 生 | | 6 | |
女 生 | 10 | | |
合 计 | | | 48 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顾客数(人) | 30 | 25 | 10 | ||
结算时间(分钟/人) | 1 | 1.5 | 2 | 2.5 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;
(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为,两人间每次射击是否击中目标互不影响。
(1)求乙至多击中目标2次的概率;
(2)求甲恰好比乙多击中目标1次的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
袋中有大小相同的三个球,编号分别为1、2和3,从袋中每次取出一个球,若取到的球的编号为偶数,则把该球编号加1(如:取到球的编号为2,改为3)后放回袋中继续取球;若取到球的编号为奇数,则取球停止,用表示所有被取球的编号之和.
(Ⅰ)求的概率分布;
(Ⅱ)求的数学期望与方差.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设为坐标原点,点的坐标
(1)在一个盒子中,放有标号为的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为,求||的最大值,并求事件“||取到最大值”的概率;
(2)若利用计算机随机在[,]上先后取两个数分别记为,
求:点在第一象限的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
某项计算机考试按科目A、科目B依次进行,只有大拿感科目A成绩合格时,才可继续参加科目B的考试,已知每个科目只允许有一次补考机会,两个科目均合格方快获得证书,现某人参加这项考试,科目A每次考试成绩合格的概率为,科目B每次考试合格的概率为,假设各次考试合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)在这次考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求随即变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得分,没有命中得分;向乙靶射击两次,每次命中的概率为,每命中一次得分,没有命中得分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com