精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为$ρsin({θ+\frac{π}{4}})=\frac{{\sqrt{2}}}{2}a$,曲线C2的参数方程为$\left\{\begin{array}{l}x=-1+cosφ\\ y=-1+sinφ\end{array}\right.$(φ为参数且0≤φ≤π).
(1)求曲线C1的直角坐标方程和曲线C2的普通方程;
(2)当曲线C1和曲线C2有两个公共点时,求实数a的取值范围.

分析 (1)曲线C1的极坐标方程为$ρsin({θ+\frac{π}{4}})=\frac{{\sqrt{2}}}{2}a$,展开可得:$\frac{\sqrt{2}}{2}$ρ(sinθ+cosθ)=$\frac{\sqrt{2}}{2}$a,利用互化公式可得可得直角坐标方程.由曲线C2的参数方程,利用平方关系:cos2φ+sin2φ=1可得普通方程,注意y的取值范围.
(2)当曲线C1和曲线C2有两个公共点时,数形结合可得:圆心(-1,-1)到直线的距离d=$\frac{|-1-1-a|}{\sqrt{2}}$<1,且a≥-1,解出即可得出.

解答 解:(1)曲线C1的极坐标方程为$ρsin({θ+\frac{π}{4}})=\frac{{\sqrt{2}}}{2}a$,
展开可得:$\frac{\sqrt{2}}{2}$ρ(sinθ+cosθ)=$\frac{\sqrt{2}}{2}$a,
可得直角坐标方程:x+y-a=0.
曲线C2的参数方程为$\left\{\begin{array}{l}x=-1+cosφ\\ y=-1+sinφ\end{array}\right.$(φ为参数且0≤φ≤π),
可得普通方程:(x+1)2+(y+1)2=1,(-1≤y≤0).
(2)当曲线C1和曲线C2有两个公共点时,
圆心(-1,-1)到直线的距离d=$\frac{|-1-1-a|}{\sqrt{2}}$<1,且a≥-1,
解得-1≤a<$\sqrt{2}$-2.

点评 本题考查了极坐标与直角坐标方程互化、参数方程化为普通方程、直线与圆相交关系,考查了数形结合方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.比较下列各题中两个数学式值的大小
(1)1.7a+1,1.7a;(2)0.9a-1,0.9a
(3)log0.9(a2+1),log0.9a2;(4)log1.2a2,log1.2(a2-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{sin(2π-x)•cos(\frac{3}{2}π+x)}{cos(3π-x)•sin(\frac{11}{2}π-x)}$,则f(-$\frac{21π}{4}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,半圆C的参数方程为$\left\{{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}}\right.$(φ为参数,0≤φ≤π),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求C的极坐标方程;
(Ⅱ)直线l的极坐标方程是$ρ(sinθ+\sqrt{3}cosθ)=5\sqrt{3}$,射线OM:θ=$\frac{π}{3}$与半圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某商场销售一种商品,已知该商品每件成本为6元,若每件售价为x元(x>6),则年销售量W(万件)与每件售价x(元)之间满足关系式:W=kx2+21x+18,且当每件售价为10元时,年销售量为28万件.
(Ⅰ)试确定k的值,并求该商场的年利润f(x)关于售价x的函数关系式;
(Ⅱ)试确定售价x的值,使年利润f(x)最大,并求出最大年利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),以点O为极点,x轴正半轴为极轴的极坐标系中,圆锥曲线C的极坐标方程为ρ2=$\frac{12}{3+si{n}^{2}θ}$
(1)求圆锥曲线C的直角坐标方程与直线l的普通方程;
(2)若直线l交圆锥曲线C于M,N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ax+$\frac{a-1}{x}$-lnx.
(Ⅰ)若a=3,求f(x)的最小值;
(Ⅱ)若当x≥1时,f(x)≥2a-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.极坐标方程ρ=2cosθ所表示的曲线是(  )
A.一条直线B.一条拋物线C.一条双曲线D.一个圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以直角坐标系xOy的原点O为极点,x正半轴为极轴建立极坐标系,已知曲线C的方程是ρ2-2ρcosθ-2$\sqrt{3}$ρsinθ+3=0,点A是曲线C与Y轴的交点,直线l的方程是ρcos(θ+$\frac{π}{6}$)=$\frac{{\sqrt{3}}}{2}$
(1)求曲线C的直角坐标方程和点A的极坐标;
(2)求以A点为圆心且与直线l相切的圆C′的极坐标方程.

查看答案和解析>>

同步练习册答案