精英家教网 > 高中数学 > 题目详情
已知-π<x<0,sinx+cosx=
15
,求下列各式的值.
(1)sinx-cosx;
(2)3sin2x-2sinxcosx+cos2x.
分析:(1)由-π<x<0结合条件可知x是第四象限角,从而sinx<0,cosx>0,由此可知sinx-cosx<0.再利用平方关系式求解(sinx-cosx)2=(sinx+cosx)2-4sinxcosx)即可求得答案.
(2)利用条件及(1)的结论得到tanx的表达式,再利用sin2x+cos2x=1,在表达式的分母增加“1”,然后分子、分母同除cos2x,得到tanx的表达式,即可求出结果.
解答:解:(1)∵sinx+cosx=
1
5
,∴x不可能是第三象限角,
∴-
π
2
<x<0,∴sinx<0,cosx>0,则sinx-cosx<0,
又sinx+cosx=
1
5
,平方后得到 1+sin2x=
1
25

∴sin2x=-
24
25
∴(sinx-cosx )2=1-sin2x=
49
25

又∵sinx-cosx<0,
∴sinx-cosx=-
7
5

(2)由于sinx+cosx=
1
5
及sinx-cosx=-
7
5

得:sinx=-
3
5
,cosx=
4
5

∴tanx=-
3
4

3sin2x-2sinxcosx+cos2x=
3sin2x-2sinxcosx+cos2x
sin2x+cos2x

=
3tan2x-2tanx+1
tanx+1
=
67
25
点评:本题利用公式(sinx-cosx)2=(sinx+cosx)2-4sinxcosx.求解时需要开方,一定要注意正负号的取法,注意角x的范围!本题是基础题,考查三角函数的表达式求值的应用,考查计算能力,注意“1”的代换,以及解题的策略.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a
b
,其中
a
=(2cosx,
3
sinx)
b
=(cosx,-2cosx)

(1)求函数f(x)在区间[0,
π
2
]
上的单调递增区间和值域;
(2)在△ABC中,a、b、c分别是角A、B、C 的对边,f(A)=-1,且b=1△ABC的面积S=
3
,求边a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sinx(cosx-sinx),其中x∈R
(1)求函数f(x)的最小正周期,并从下列的变换中选择一组合适变换的序号,经过这组变换的排序,可以把函数y=sin2x的图象变成y=f(x)的图象;(要求变换的先后顺序)
①纵坐标不变,横坐标变为原来的
1
2
倍,
②纵坐标不变,横坐标变为原来的2倍,
③横坐标不变,纵坐标变为原来的
2
倍,
④横坐标不变,纵坐标变为原来的
2
2
倍,
⑤向上平移一个单位,⑥向下平移一个单位,
⑦向左平移
π
4
个单位,⑧向右平移
π
4
个单位,
⑨向左平移
π
8
个单位,⑩向右平移
π
8
个单位,
(2)在△ABC中角A,B,C对应边分别为a,b,c,f(A)=0,b=4,S△ABC=6,求a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙F1(x+
3
)2+y2=16
F2(
3
,0)
,在⊙F1上取点P,连接PF2,作出线段PF2的垂直平分线交PF1于M,当点P在⊙F1上运动时M形成曲线C.(如图)
(1)求曲线C的轨迹方程.
(2)过点F2的直线l交曲线C于R,T两点,满足|RT|=
3
2
,求直线l的方程.
(3)点Q在曲线C上,且满足F1QF2=
π
3
,求SF1F2Q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
x-2
x+2
的定义域为[s,t],值域为[logaa(t-1),logaa(s-1)].
(1)求a的取值范围;
(2)若函数g(x)=logaa(x-1)-loga
x-2
x+2
,x∈[s,t]的最大值为M,求证:0<M<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),动点P满足|PF1|-|PF2|=2,记动点P的轨迹为S,过点F2作直线l与轨迹S交于P、Q两点,过P、Q作直线x=
12
的垂线PA、QB,垂足分别为A、B,记λ=|AP|•|BQ|.
(Ⅰ)求轨迹S的方程;
(Ⅱ)设点M(-1,0),求证:当λ取最小值时,△PMQ的面积为9.

查看答案和解析>>

同步练习册答案