精英家教网 > 高中数学 > 题目详情
已知F1(-2,0),F2(2,0),动点P满足|PF1|-|PF2|=2,记动点P的轨迹为S,过点F2作直线l与轨迹S交于P、Q两点,过P、Q作直线x=
12
的垂线PA、QB,垂足分别为A、B,记λ=|AP|•|BQ|.
(Ⅰ)求轨迹S的方程;
(Ⅱ)设点M(-1,0),求证:当λ取最小值时,△PMQ的面积为9.
分析:(Ⅰ)由|PF1|-|PF2|=2<|F1F2|知,点P的轨迹S是以F1、F2为焦点的双曲线右支,结合焦点坐标,可求轨迹S的方程;(Ⅱ)当直线l的斜率存在时,设直线方程为y=k(x-2),与双曲线方程联立消y得(k2-3)x2-4k2x+4k2+3=0,结合韦达定理,及λ=|AP|•|BQ|,考虑直线斜率不存在,确定λ的最小值为
9
4
,从而可求△PMQ的面积.
解答:(Ⅰ)解:由|PF1|-|PF2|=2<|F1F2|知,点P的轨迹S是以F1、F2为焦点的双曲线右支.…(1分)
由c=2,2a=2,∴b2=3.               …(3分)
故轨迹S的方程为x2-
y2
3
=1 (x≥1)…(5分)
(Ⅱ)证明:当直线l的斜率存在时,…(6分)
设直线方程为y=k(x-2),P(x1,y1),Q(x2,y2),与双曲线方程联立消y得(k2-3)x2-4k2x+4k2+3=0       …(7分)
△>0
x1+x2=
4k2
k2-3
>0
x1x2=
4k2+3
k2-3
>0
解得k2>3.…(9分)
∵λ=|AP|•|BQ|=|x1-
1
2
||x2-
1
2
|
=
1
4
(2x1-1)(2x2-1)=
1
4
[4x1x2-2(x1+x2)+1]=x1x2-
x1+x2
2
+
1
4
       …(11分)
=
4k2+3
k2-3
-
2k2
k2-3
+
1
4
=
2k2+3
k2-3
+
1
4
=
9
4
+
9
k2-3
9
4
.  …(12分)
当斜率不存在时,|AP|•|BQ|=
9
4
,∴λ的最小值为
9
4
.…(13分)
此时,|PQ|=6,|MF2|=3,S△PMQ=
1
2
||MF2|•|PQ|=9.…(14分)
点评:本题考查双曲线的标准方程,考查双曲线的定义,考查直线与双曲线的位置关系,考查三角形面积的计算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.
(1)求轨迹E的方程;
(2)若直线l过点F2且与轨迹E交于P、Q两点.无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.求轨迹E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0)是椭圆C的两个焦点,过F1的直线与椭圆C的两个交点为M,N,且|MN|的最小值为6.
(I)求椭圆C的方程;
(II)设A,B为椭圆C的长轴顶点.当|MN|取最小值时,求∠AMB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E;
(Ⅰ)求轨迹E的方程;
(Ⅱ)若直线l过点F2且与轨迹E交于P、Q两点;
①设点M(m,0),问:是否存在实数m,使得直线l绕点F2无论怎样转动,都有
MP
MQ
=0
成立?若存在,求出实数m的值;若不存在,请说明理由;
②过P、Q作直线x=
1
2
的垂线PA、QB,垂足分别为A、B,记λ=
|PA|+|QB|
|AB|
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-
2
,0),F2
2
,0),点P满足|PF1|+|PF2|=2
3
,记点P的轨迹为E
(Ⅰ)求轨迹E的方程;
(Ⅱ)设轨迹E与直线y=kx+m(k≠0)相交于不同的两点M,N.已知A(0,-1),当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

同步练习册答案