精英家教网 > 高中数学 > 题目详情
已知F1(-2,0),F2(2,0)是椭圆C的两个焦点,过F1的直线与椭圆C的两个交点为M,N,且|MN|的最小值为6.
(I)求椭圆C的方程;
(II)设A,B为椭圆C的长轴顶点.当|MN|取最小值时,求∠AMB的大小.
分析:(Ⅰ)由题意,设椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0),其中c=2,a2-b2=4.设M(x1,y1),N(x2,y2).若直线MN⊥x轴,则MN的方程为x=-2,由此能够求出椭圆C的方程.
(Ⅱ)由A(-4,0),B(4,0).当|MN|取得最小值时,MN⊥x轴.根据椭圆的对称性,取M(-2,3),∠AMB即直线AM到直线MB的角.由此能够求出∠AMB的大小.
解答:解:(Ⅰ)由题意,设椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0),其中c=2,a2-b2=4.
设M(x1,y1),N(x2,y2).
若直线MN⊥x轴,则MN的方程为x=-2,代入
x2
a2
+
y2
b2
=1,得y2=b2(1-
4
a2
)=
b4
a2

∴|y1-y2|=
b2
a
,即|AB|=
2b2
a

若直线MN不与x轴垂直,则设MN的方程为y=k(x+2),代入
x2
a2
+
y2
b2
=1,
x2
a2
+
k2(x2+4x+4)
b2
=1,
即 (a2k2+b2)x2+4a2k2x+a2(4k2-b2)=0.
△=(4a2k22-4(a2k2+b2)a2(4k2-b2
=4a2b2[(a2-4)k2+b2]=4a2b4(1+k2),
∴|x1-x2|=
2ab2
1+k2
a2k2+b2

∴|MN|=
2ab2
1+k2
a2k2+b2
1+k2

=
2ab2(1+k2)
a2k2+b2

=
2b2
a
1+k2
k2+
b2
a2
2b2
a

综上,|MN|的最小值为
2b2
a

由题知
2b2
a
=6,即 b2=3a.
代入a2-b2=4,得a2-3a-4=0,
解得a=-1(舍),或a=4.∴b2=12.
∴椭圆C的方程为
x2
16
+
y2
12
=1.
(Ⅱ)由(Ⅰ)知A(-4,0),B(4,0).
当|MN|取得最小值时,MN⊥x轴.
根据椭圆的对称性,不妨取M(-2,3),
∠AMB即直线AM到直线MB的角.
∵AM的斜率k1=
3-0
-2+4
=
3
2

BM的斜率k2=
3-0
-2-4
=-
1
2

∴tan∠AMB=
k2-k1
1+k1k2
=-8.
∵∠AMB∈(0,π),
∴∠AMB=π-arctan8.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.
(1)求轨迹E的方程;
(2)若直线l过点F2且与轨迹E交于P、Q两点.无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.求轨迹E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E;
(Ⅰ)求轨迹E的方程;
(Ⅱ)若直线l过点F2且与轨迹E交于P、Q两点;
①设点M(m,0),问:是否存在实数m,使得直线l绕点F2无论怎样转动,都有
MP
MQ
=0
成立?若存在,求出实数m的值;若不存在,请说明理由;
②过P、Q作直线x=
1
2
的垂线PA、QB,垂足分别为A、B,记λ=
|PA|+|QB|
|AB|
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-
2
,0),F2
2
,0),点P满足|PF1|+|PF2|=2
3
,记点P的轨迹为E
(Ⅰ)求轨迹E的方程;
(Ⅱ)设轨迹E与直线y=kx+m(k≠0)相交于不同的两点M,N.已知A(0,-1),当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

同步练习册答案