| A. | 若f(x1)=-f(x2),则x1=-x2 | B. | f(x)在区间[-$\frac{3π}{4}$,-$\frac{π}{4}$]上是增函数 | ||
| C. | f(x)的最小正周期是2π | D. | f(x)的图象关于直线x=$\frac{3π}{4}$对称 |
分析 利用诱导公式、倍角公式将函数转化为正弦函数,然后结合正弦函数图象的性质进行判断即可.
解答 解:f(x)=sin($\frac{π}{2}$+x)cos($\frac{π}{2}$-x)=$\frac{1}{2}$sin2x,
A、若f(x1)=-f(x2),则f(x1)=f(-x2),所以x1=-x2+2kπ(k∈Z),故本选项错误;
B、令-$\frac{π}{2}$+2kπ≤2x≤$\frac{π}{2}$+2kπ,所以-$\frac{π}{4}$+kπ≤x≤$\frac{π}{4}$+kπ(k∈Z),即f(x)在区间[$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ]上是增函数f(x)的最小正周期是π,故本选项错误;
C、f(x)的最小正周期是π,故本选项错误;
D、令2x=$\frac{π}{2}$+kπ,所以x=$\frac{π}{4}$+$\frac{1}{2}$kπ(k∈Z),故本选项正确;
故选:D.
点评 本题考查了三角函数中的恒等变换应用,正弦函数的图象.利用三角函数公式将函数进行化简是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -2 | C. | 0 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,1) | C. | (1,2] | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com