精英家教网 > 高中数学 > 题目详情
19.集合A={x|-2<x<4},集合B={x|2m-1<x<m+3}
(1)全集U={x|x≤4},当m=-1时,求(∁UA)∪B和A∩(∁UB);
(2)若A∪B=A,求实数a的取值范围.

分析 (1)m=-1时求出集合B,然后进行补集、交集和并集的运算即可;
(2)根据条件得出B⊆A,然后讨论集合B是否为空集,建立关于m的不等式,解不等式求出m的范围,求并集即得出实数m的取值范围.

解答 解:(1)m=-1时,B={x|-3<x<2};
∴∁UA={x|x≤-2,或x=4},∁UB={x|x≤-3,或2≤x≤4};
∴(∁UA)∪B={x|x<2,或x=4},A∩(∁UB)={x|2≤x<4};
(2)若A∪B=A,则B⊆A;
①B=∅时,2m-1≥m+3;
∴m≥4;
②B≠∅时,则:$\left\{\begin{array}{l}{2m-1<m+3}\\{2m-1≥-2}\\{m+3≤4}\end{array}\right.$;
解得$-\frac{1}{2}≤m≤1$;
∴实数m的取值范围为$[-\frac{1}{2},1]∪[4,+∞)$.

点评 考查描述法表示的概念及形式,并集、补集和交集的运算,子集的概念,不要忘了讨论B是否为空集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=|3x-1|,a∈[$\frac{1}{3},1)$,若函数u(x)=f(x)-a有两个不同的零点x1、x2(x1<x2),υ(x)=f(x)$-\frac{a}{2a+1}$有两个不同的零点x3、x4(x3<x4),则(x4-x3)+(x2-x1)的最小值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.比较两个实数的大小:0.5-2>0.5-0.8(填上“>或<“).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线的顶点在原点,准线方程是y=4,则该抛物线的标准方程为(  )
A.x2=16yB.y2=-16xC.y2=16xD.x2=-16y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知R是实数集,集合$M=\{x|\frac{3}{x}<1\}$,$N=\{y|y=\sqrt{x-2}-2\}$,则N∩(∁RM)=(  )
A.[-2,3]B.[3,+∞)C.(-∞,-2]D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{ax}{{x}^{2}+1}$是(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sin($\frac{π}{2}$+x)cos($\frac{π}{2}$-x),其中正确说法为(  )
A.若f(x1)=-f(x2),则x1=-x2B.f(x)在区间[-$\frac{3π}{4}$,-$\frac{π}{4}$]上是增函数
C.f(x)的最小正周期是2πD.f(x)的图象关于直线x=$\frac{3π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义在R上的奇函数f(x),当x>0时,f(x)=lnx-ax+1(a∈R).
(1)求动点f(x)的解析式;
(2)当a=1,求函数f(x)的单调区间;
(3)若函数y=f(x)在R上恰好有5个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一周期内,当x=$\frac{π}{4}$时,y取得最大值1,当x=$\frac{7π}{12}$时,y取得最小值-1,则f(x)=(  )
A.sin(2x+$\frac{π}{4}$)B.sin(2x+$\frac{π}{3}$)C.sin(2x-$\frac{π}{4}$)D.sin(3x-$\frac{π}{4}$)

查看答案和解析>>

同步练习册答案