精英家教网 > 高中数学 > 题目详情
8.与x轴相切且和半圆x2+y2=4(0≤y≤2)内切的动圆圆心的轨迹方程是(  )
A.x2=-4(y-1)(0<y≤1)B.x2=4(y-1)(0<y≤1)C.x2=4(y+1)(0<y≤1)D.x2=-2(y-1)(0<y≤1)

分析 当两圆内切时,根据两圆心之间的距离等于两半径相减可得动圆圆心的轨迹方程.

解答 解:设动圆圆心为M(x,y),做MN⊥x轴交x轴于N.
因为两圆内切,|MO|=2-|MN|,
所以$\sqrt{{x}^{2}+{y}^{2}}$=2-y,
化简得x2=4-4y(1≥y>0)
故选A.

点评 此题考查学生掌握圆与圆的位置关系所满足的条件,考学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.为了保护环境发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为f(x)=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5140x,x∈[120,144]}\\{\frac{1}{2}{x}^{2}-100x+80000,x∈[144,400]}\end{array}\right.$且每处理一吨二氧化碳得到可利用的化工产品价值为300元,若该项目不获利,国家将给予补偿.
(Ⅰ)当x∈[150,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?
(Ⅱ)该项目每月处理量为多少吨时?才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点.将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A',连结EF,A'B.
(1)求异面直线A'D与EF所成角的大小;
(2)求三棱锥D-A'EF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的首项a1=m,其前n项和为Sn,且满足Sn+Sn+1=3n2+2n,若对?n∈N+,an<an+1恒成立,则m的取值范围是(-2,$\frac{5}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四个命题中,真命题的是(  )
A.空间中两组对边分别相等的四边形为平行四边形
B.所有梯形都有外接圆
C.所有的质数的平方都不是偶数
D.不存在一个奇数,它的立方是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,圆(x+2)2+y2=4的圆心为点B,A(2,0),P是圆上任意一点,线段AP的垂直平分线l和直线BP相交于点Q,当点P在圆上运动时,点Q的轨迹方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从点A(2,-1,7)沿向量$\overrightarrow{a}$=(8,9,-12)的方向取线段长|AB|=34,则B点的坐标为(  )
A.(18,17,-17)B.(-14,-19,17)C.$({6,\frac{7}{2},1})$D.$({-2,-\frac{11}{2},13})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了整顿食品的安全卫生,食品监督部门对某食品厂生产甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克).

规定:当食品中的有害微量元素的含量在[0,10]时为一等品,在[10,20]为二等品,20以上为劣质品.
(1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个,求甲的一等品数与乙的一等品数相等的概率;
(2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元,根据上表统计得到甲、乙两种食品为一等品、二等品、劣质品的频率,分别估计这两种食品为一等品、二等品、劣质品的概率,若分别从甲、乙食品中各抽取1件,设这两件食品给该厂带来的盈利为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如右图所示.已知电商为下一个销售季度筹备了130吨该商品.现以x(单位:吨,100≤x≤150)表示下一个销售季度的市场需求量,T(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
(Ⅰ)将T表示为x的函数,求出该函数表达式;
(Ⅱ)根据直方图估计利润T不少于57万元的概率;
(Ⅲ)根据频率分布直方图,估计一个销售季度内市场需求量x的平均数与中位数的大小.

查看答案和解析>>

同步练习册答案