精英家教网 > 高中数学 > 题目详情
(B题)奇函数y=f(x)在定义域[-1,1]上是增函数,则满足f(m-1)+f(2m-1)<0的m的取值范围为(  )
A.[0,1]B.[0,
2
3
C.[0,
2
3
]
D.[0,1)
由函数f(x)为奇函数可得,不等式即 f(m-1)<-f(2m-1)=f(1-2m),
再根据f(x)在定义域[-1,1]上是增函数,故可得-1≤m-1<1-2m≤1,
解得0≤m<
2
3

故选 B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax+3,g(x)=(6+a)•2x-1
(Ⅰ)若f(1)=f(3),求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,判断函数F(x)=
2
1+g(x)
的单调性,并给出证明;
(Ⅲ)当x∈[-2,2]时,f(x)≥a(a∉(-4,4))恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:1-a•2x≥0在x∈(-∞,0]恒成立,命题q:?x∈R,ax2-x+a>0.若命题p或q为真,命题p且q为假,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3-
9
2
x2+6x-a

(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=x2-1,对任意x∈[
3
2
,+∞),f(
x
m
)-4m2f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在[-2,2]上的奇函数g(x),当x≥0时,g(x)单调递减,若g(1-2m)<g(m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x2-2x,
(1)求出函数f(x)在R上的解析式;
(2)画出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
1-x2
丨x+1丨+丨x-2丨
,则f(x)是(  )
A.是奇函数,而非偶函数B.是偶函数,而非奇函数
C.既是奇函数又是偶函数D.是非奇非偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=ax2+bx-2是定义在[1+a,2]上的偶函数,则f(x)在区间[1,2]上是(  )
A.增函数B.减函数
C.先增后减函数D.先减后增函数

查看答案和解析>>

同步练习册答案