精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3-
9
2
x2+6x-a

(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
(1)f′(x)=3x2-9x+6=3(x-1)(x-2),
因为x∈(-∞,+∞),f′(x)≥m,
即3x2-9x+(6-m)≥0恒成立,
所以△=81-12(6-m)≤0,
m≤-
3
4
,即m的最大值为-
3
4

(2)因为当x<1时,f′(x)>0;
当1<x<2时,f′(x)<0;当x>2时,f′(x)>0;
所以当x=1时,f(x)取极大值f(1)=
5
2
-a

当x=2时,f(x)取极小值f(2)=2-a;
故当f(2)>0或f(1)<0时,
方程f(x)=0仅有一个实根、解得a<2或a>
5
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

函数f(x)=
x2-x4
|x-2|-2
.给出函数f(x)下列性质:(1)函数的定义域和值域均为[-1,1];(2)函数的图象关于原点成中心对称;(3)函数在定义域上单调递增;(4)Af(x)dx=0(其中A为函数的定义域);(5)A、B为函数f(x)图象上任意不同两点,则
2
<|AB|≤2
.请写出所有关于函数f(x)性质正确描述的序号______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数y=f(x)在区间(0,+∞)内可导.导函数f(x)是减函数,且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.
(1)用x0,f(x0),f(x0)表示m;
(2)证明:当x∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b为实数,求b的取值范围及a,b所满足的关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1.若对任意a,b∈[-1,1],a+b≠0都有
f(a)+f(b)
a+b
>0

(1)判断函数f(x)的单调性,并说明理由;
(2)解不等式f(x-
1
2
)+f(x-
1
4
)<0

(3)若不等式f(x)+(2a-1)t-2≤0对所有x∈[-1,1]和a∈[-1,1]都恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x+1)为偶函数,且f(x)在(1,+∞)上递减,设a=f(log210),b=f(log310),c=f(0.10.2),则a,b,c的大小关系正确的是(  )
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在R上的函数f(x)=2x+
a
2x

(1)若f(x)为偶函数,求a的值;
(2)若f(x)在[0,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(B题)奇函数y=f(x)在定义域[-1,1]上是增函数,则满足f(m-1)+f(2m-1)<0的m的取值范围为(  )
A.[0,1]B.[0,
2
3
C.[0,
2
3
]
D.[0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=x2+2x+3,求f(x),g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x+
1
x

(Ⅰ)求证函数f(x)为奇函数;
(Ⅱ)用定义证明:函数f(x)在(1,+∞)上是增函数.

查看答案和解析>>

同步练习册答案