精英家教网 > 高中数学 > 题目详情
函数y=f(x)在区间(0,+∞)内可导.导函数f(x)是减函数,且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.
(1)用x0,f(x0),f(x0)表示m;
(2)证明:当x∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b为实数,求b的取值范围及a,b所满足的关系.
(1)y-f(x0)=f'(x0)(x-x0
∴m=f(x0)-x0f'(x0).
(2)证明:令h(x)=g(x)-f(x),则h'(x)=f'(x0)-f'(x),h'(x0)=0.
因为f'(x)递减,所以h'(x)递增,因此,当x>x0时,h'(x)>0;
当x<x0时,h'(x)<0.所以x0是h(x)唯一的极值点,且是极小值点,
可知h(x)的最小值为0,因此h(x)≥0,即g(x)≥f(x).
(3)把ax移到两边得x2+1-ax≥b≥
3
2
x
2
3
-ax

令y1=x2+1-ax,y2=
3
2
x
2
3
-ax
y/2
=x-
1
3
-a

a
2
<0
时,(y1min=1,(y2max=0,∴1≥b≥0
a
2
≥0
时,(y1)min=1-
a2
4
,(y2)max=
1
2a2

1-
a2
4
≥b≥
1
2a2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x2+bx+c,不等式f(x)<0的解集是(0,5),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数.(Ⅰ)判断的奇偶性;(Ⅱ)设方程的两实根为,证明函数上的增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时f(x)=-2(x-3)2,若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则a的取值范围为(  )
A.(0,
2
2
)
B.(0,
3
3
)
C.(0,
5
5
)
D.(0,
6
6
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=(
x-1
x+1
)2
(x>1),
(1)若g(x)=
1
f-1(x)
+
x
+2
,求g(x)的最小值;
(2)若不等式(1-
x
)•f-1(x)>m•(m-
x
)
对于一切x∈[
1
4
1
2
]
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
4x+a
1+x2
的单调递增区间为[m,n]
(1)求证f(m)f(n)=-4;
(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上的两点,若存在x0使得f′(x0)=
f(x2)-f(x1)
x2-x1
,x求证x1<|x0|<x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax+3,g(x)=(6+a)•2x-1
(Ⅰ)若f(1)=f(3),求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,判断函数F(x)=
2
1+g(x)
的单调性,并给出证明;
(Ⅲ)当x∈[-2,2]时,f(x)≥a(a∉(-4,4))恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3-
9
2
x2+6x-a

(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义两种运算:,则
是______________函数,(填奇、偶、非奇非偶,既奇又偶四个中的一个)

查看答案和解析>>

同步练习册答案