精英家教网 > 高中数学 > 题目详情
已知f(x)=x2+bx+c,不等式f(x)<0的解集是(0,5),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范围.
(Ⅰ)∵不等式f(x)<0的解集是(0,5),
∴0,5是对应方程x2+bx+c=0的两个根,
即-b=5,c=0,
∴b=-5,c=0,
即f(x)的解析式为f(x)=x2-5x;
(Ⅱ)不等式f(x)+t≤2恒成立等价为不等式x2-5x+t-2≤0恒成立,
设g(x)=x2-5x+t-2,对称轴为x=
5
2

则由二次函数的图象可知在区间[-1,1]为减函数,
∴g(x)min=g(-1)=t+4,
∴t≤-4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

函数y=f(x)在区间(0,+∞)内可导.导函数f(x)是减函数,且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.
(1)用x0,f(x0),f(x0)表示m;
(2)证明:当x∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b为实数,求b的取值范围及a,b所满足的关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数lnx≤xem2-m-1对任意的正实数x恒成立,则m的取值范围是(  )
A.(-∞,0]∪[1,+∞)B.[0,1]C.[e,2e]D.(-∞,e)∪[2e,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+(lga-2)x+lgb满足f(1)=0,
(1)求a+b的最小值及此时a与b的值;
(2)对于任意x∈R,恒有f(x)≥2x-6成立.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是定义在R上的奇函数,且f(x+3)f(x)=-1,f(-2)=1,则f(2012)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1.若对任意a,b∈[-1,1],a+b≠0都有
f(a)+f(b)
a+b
>0

(1)判断函数f(x)的单调性,并说明理由;
(2)解不等式f(x-
1
2
)+f(x-
1
4
)<0

(3)若不等式f(x)+(2a-1)t-2≤0对所有x∈[-1,1]和a∈[-1,1]都恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x+1)为偶函数,且f(x)在(1,+∞)上递减,设a=f(log210),b=f(log310),c=f(0.10.2),则a,b,c的大小关系正确的是(  )
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=x2+2x+3,求f(x),g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的定义域是,是偶函数, 是奇函数,且,求的解析式.

查看答案和解析>>

同步练习册答案