精英家教网 > 高中数学 > 题目详情
函数lnx≤xem2-m-1对任意的正实数x恒成立,则m的取值范围是(  )
A.(-∞,0]∪[1,+∞)B.[0,1]C.[e,2e]D.(-∞,e)∪[2e,+∞)
lnx≤xem2-m-1可化为
lnx
x
em2-m-1

则问题等价于(
lnx
x
)max
em2-m-1
令f(x)=
lnx
x
,(x>0),则f'(x)=
1-lnx
x2

当0<x<e时,f'(x)>0,f(x)单调递增;当x>e时,f'(x)<0,f(x)单调递减;
故x=e时,f(x)取得极大值,也为最大值,f(e)=
1
e

1
e
em2-m-1
,则-1≤m2-m-1,解得m≤0或m≥1,
∴实数m的取值范围是(-∞,0]∪[1,+∞),
故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x2+bx+c,不等式f(x)<0的解集是(0,5),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时f(x)=-2(x-3)2,若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则a的取值范围为(  )
A.(0,
2
2
)
B.(0,
3
3
)
C.(0,
5
5
)
D.(0,
6
6
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
4x+a
1+x2
的单调递增区间为[m,n]
(1)求证f(m)f(n)=-4;
(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上的两点,若存在x0使得f′(x0)=
f(x2)-f(x1)
x2-x1
,x求证x1<|x0|<x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax+3,g(x)=(6+a)•2x-1
(Ⅰ)若f(1)=f(3),求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,判断函数F(x)=
2
1+g(x)
的单调性,并给出证明;
(Ⅲ)当x∈[-2,2]时,f(x)≥a(a∉(-4,4))恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数F(x)=ex满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若?x∈[1,2]使得不等式g(2x)-ah(x)≥0恒成立,则实数a的取值范围是(  )
A.(-∞,2
2
)
B.(-∞,2
2
]
C.(0,2
2
]
D.(2
2
,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数为偶函数的是(  )
A.y=x2+xB.y=x5C.y=x+
1
x
D.y=
1
x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在[-2,2]上的奇函数g(x),当x≥0时,g(x)单调递减,若g(1-2m)<g(m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数,且,则           (    )
A.-26B.-18C.-10D.10

查看答案和解析>>

同步练习册答案