精英家教网 > 高中数学 > 题目详情
已知函数F(x)=ex满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若?x∈[1,2]使得不等式g(2x)-ah(x)≥0恒成立,则实数a的取值范围是(  )
A.(-∞,2
2
)
B.(-∞,2
2
]
C.(0,2
2
]
D.(2
2
,+∞)
∵F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,
∴g(x)+h(x)=ex
则g(-x)+h(-x)=e-x
即g(x)-h(x)=e-x
解得g(x)=
ex+e-x
2
,h(x)=
ex-e-x
2

则?x∈[1,2]使得不等式g(2x)-ah(x)≥0恒成立,
等价为
e2x+e-2x
2
-a?
ex-e-x
2
≥0
恒成立,
a≤
e2x+e-2x
ex-e-x
=
(ex-e-x)2+2
ex-e-x
=(ex-e-x)+
2
ex-e-x

设t=ex-e-x,则函数t=ex-e-x在[1,2]上单调递增,
∴e-e-1≤t≤e2-e-2
此时 不等式t+
2
t
≥2
t•
2
t
=2
2

∴a≤2
2

即实数a的取值范围是a≤2
2

故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

判断的奇偶性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ln(ex+a)(e是自然对数的底数,a为常数)是实数集R上的奇函数,若函数g(x)=lnx-f(x)(x2-2ex+m)在(0,+∞)上有两个零点,则实数m的取值范围是(  )
A.(
1
e
,e2+
1
e
B.(0,e2+
1
e
C.(e2+
1
e
,+∞)
D.(-∞,e2+
1
e

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=(a-
1
ex-1
)sinx
是偶函数,则常数a等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数lnx≤xem2-m-1对任意的正实数x恒成立,则m的取值范围是(  )
A.(-∞,0]∪[1,+∞)B.[0,1]C.[e,2e]D.(-∞,e)∪[2e,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2ax-(2a+2)
(Ⅰ)解关于x的不等式f(x)>x;
(Ⅱ)若f(x)+3≥0在区间(-1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是定义在R上的奇函数,且f(x+3)f(x)=-1,f(-2)=1,则f(2012)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二次函数f(x)=x2+2ax+2a+1.
(1)若对任意x∈R有f(x)≥1恒成立,求实数a的取值范围;
(2)讨论函数f(x)在区间[0,1]上的单调性;
(3)若对任意的x1,x2∈[0,1]有|f(x1)-f(x2)|≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)一个矩形的面积为8,如果此矩形的对角线长为y,一边长为x,试把y表示成x的函数.
(2)证明:函数f(x)=x2+1是偶函数,且在[0,+∞)上是增函数.

查看答案和解析>>

同步练习册答案