精英家教网 > 高中数学 > 题目详情
(2010•湖北模拟)如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(1)证明:AC⊥PB;
(2)证明:PB∥平面AEC;
(3)求二面角E-AC-B的大小.
分析:(1)利用线面垂直的性质及判定定理,即可证明AC⊥平面PAB,从而可得AC⊥PB;
(2)连结BD,与AC相交于O,连结EO,证明PB∥EO,即可证明PB∥平面AEC;
(3)过O作FG∥AB,交AD于F,交BC于G,则∴∠EOG是二面角E-AC-B的平面角,连结EF,即可求二面角E-AC-B的大小.
解答:(1)证明:∵PA⊥平面ABCD,AC在平面ABCD内,∴AC⊥PA
又AC⊥AB,PA∩AB=A,∴AC⊥平面PAB(2分)
又PB在平面PAB内,∴AC⊥PB(4分)
(2)证明:连结BD,与AC相交于O,连结EO
∵ABCD是平行四边形,∴O是BD的中点(5分)
又E为PD中点,∴PB∥EO(6分)
又PB在平面AEC外,EO在AEC平面内,∴PB∥平面AEC(8分)
(3)解:过O作FG∥AB,交AD于F,交BC于G,则F为AD中点
∵AB⊥AC,∴OG⊥AC
又由 (1)(2)知,AC⊥PB,EO∥PB,
∴AC⊥EO(10分)
∴∠EOG是二面角E-AC-B的平面角
连结EF,在△EFO中,FO=
1
2
AB

又PA=AB,EF⊥FO,∴∠EOF=45°
∴∠EOG=135°,即二面角E-AC-B的大小为135°.(12分)
点评:本题考查线面垂直的判定与性质,考查线面平行,考查面面角,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•湖北模拟)如图,正方体AC1的棱长为1,连接AC1,交平面A1BD于H,则以下命题中,错误的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)等比数列{an}的公比为q,则“a1>0,且q>1”是“对于任意正自然数n,都有an+1>an”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)△ABC内接于以O为圆心,半径为1的圆,且3
OA
+4
OB
+5
OC
=
0
,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)已知数列|an|满足:an=n+1+
8
7
an+1
,且存在大于1的整数k使ak=0,m=1+
8
7
a1

(1)用k表示m(化成最简形式);
(2)若m是正整数,求k与m的值;
(3)当k大于7时,试比较7(m-49)与8(k2-k-42)的大小.

查看答案和解析>>

同步练习册答案