精英家教网 > 高中数学 > 题目详情
已知双曲线,点分别为双曲线的左、右焦点,动点轴上方.
(1)若点的坐标为是双曲线的一条渐近线上的点,求以为焦点且经过点的椭圆的方程;
(2)若∠,求△的外接圆的方程;
(3)若在给定直线上任取一点,从点向(2)中圆引一条切线,切点为. 问是否存在一个定点,恒有?请说明理由.
(1)(2)(3)存在

试题分析:(1)双曲线的左、右焦点的坐标分别为
∵双曲线的渐进线方程为:
∴点的坐标为是渐进线上的点,即点的坐标为
∴椭圆的长轴长
∵半焦距,∴椭圆的方程            ..5分
(2)∵,∴,即
又圆心在线段的垂直平分线上,故可设圆心
。∴△的外接圆的方程为     ..9分
(3)假设存在这样的定点设点P的坐标为
∵恒有,∴
恒成立。
从而,消去,得
∵方程的判别式
∴①当时,方程无实数解,∴不存在这样的定点
②当时,方程有实数解,此时,即直线与圆相离或相切,故此时存在这样的定点;      14分
点评:解析几何综合题主要考查直线和圆锥曲线的位置关系以及范围、最值、定点、定值、存在性等问题,直线与多种曲线的位置关系的综合问题将会逐步成为今后命题的热点,尤其是把直线和圆的位置关系同本部分知识的结合,将逐步成为今后命题的一种趋势
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若方程表示双曲线,则实数k的取值范围是  (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于,而与抛物线交于两点,且.

(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线与椭圆相交于两点
为椭圆上一点,且满足为坐标原点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且的周长为,求椭圆的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点的距离为到直线的距离为,求证:为定值;
 
(3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,),试用表示;并求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是椭圆的右焦点,点分别是轴、
轴上的动点,且满足.若点满足
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交
于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,
请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角坐标系中,一直角三角形,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.

⑴ 求双曲线的方程;
⑵ 若一过点为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线与椭圆交于两点,已知
,若且椭圆的离心率,又椭圆经过点
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点为半焦距),求直线的斜率的值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点坐标是______________.

查看答案和解析>>

同步练习册答案