精英家教网 > 高中数学 > 题目详情

(1)已知a2x3x+1>ax+2x1(a>0且a≠1)求x的取值范围。

(2)求函数y=的定义域以及单调递增区间。

(1)见解析(2)函数的定义域为[-,-1)∪(1,],单调递增区间

是[-,-1)


解析:

(1)当a>1时,不等式的解集为

当0<a<1时,不等式的解集为

(2)由log(x2-1)≥0得,原函数的定义域为[-,-1)∪(1,],单调递增区间

是[-,-1)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:(1)已知a>0,a2x=3,求
a3x+a-3x
ax+a-x
的值;
(2)求
lg8+lg125-lg2-lg5
lg
10
•lg0.1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知实数集A={x|a1x=b1,a1b1≠0},B={x|a2x=b2,a2b2≠0},证明:A=B的充要条件是
a1
a2
=
b1
b2

(2)已知实数集A={x|a1x2+b1x+c1=0,a1b1c1≠0},B=x|a2x2+b2x+c2=0,a2b2c2≠0},问
a1
a2
=
b1
b2
=
c1
c2
是A=B的什么条件?请给出说明过程;
(3)已知实数集A={x|a1x2+b1x+c1>0,a1b1c1≠0},B=x|a2x2+b2x+c2>0,a2b2c2≠0},,问
a1
a2
=
b1
b2
=
c1
c2
是A=B的什么条件?请给出说明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求证:bn=
2
7
8n-
2
7

(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区模拟)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知(a+a-12=3,求a3+a-3
(2)已知a2x=
2
+1,求
a3x+a-3x
ax+a-x

(3)已知x-3+1=a,求a2-2ax-3+x-6的值.

查看答案和解析>>

同步练习册答案