精英家教网 > 高中数学 > 题目详情

【题目】定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆与椭圆是相似的两个椭圆,并且相交于上下两个顶点.椭圆的长轴长是4,椭圆短轴长是1,点分别是椭圆的左焦点与右焦点.

(1)求椭圆的方程;

(2)过的直线交椭圆于点,求面积的最大值.

【答案】(1)见解析(2)函数上的最大值.

【解析】

试题分析】

解:(1)当时,

,得

变化时, 的变化如下表:

0

+

0

-

0

+

极大值

极小值

由上表可知,函数的递减区间为,递增区间为.

(2),令,得

,则,所以上递增,

所以,从而,所以

所以当时, ;当时,

所以.

,则,令,则

所以上递减,而

所以存在使得,且当时, ;当时, ,所以上单调递增,在上单调递减.

因为,所以上恒成立,当且仅当时取得“=”.

综上,函数上的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于,总有.(i)求实数的范围; (ii)求证:对于,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在矩形中, 的中点,将三角形沿翻折到图②的位置,使得平面平面.

(Ⅰ)在线段上确定点,使得平面,并证明;

(Ⅱ)求所在平面构成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.

1)求椭圆的标准方程;

2)设,过椭圆左焦点的直线两点,若对满足条件的任意直线,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

10

0.25

25

2

0.05

合计

1

(1)求出表中及图中的值;

(2)试估计他们参加社区服务的平均次数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,由甲、乙两人这几场比赛得分的中位数之和是(
A.65
B.64
C.63
D.62

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点为椭圆上一点. 的重心为,内心为,且,则该椭圆的离心率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用AB两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.

(Ⅰ)根据频率分布直方图填写下面2×2列联表;

甲班(A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ),曲线处的切线方程为.

(Ⅰ)求 的值;

(Ⅱ)证明:

(Ⅲ)已知满足的常数为.令函数(其中是自然对数的底数, ),若的极值点,且恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案