精英家教网 > 高中数学 > 题目详情
2.顶点在原点,始边在x轴的正半轴上的角α、β的终边与圆心在原点的单位圆交于A、B两点,若α=30°,β=60°,则弦AB的长为$\frac{\sqrt{6}-\sqrt{2}}{2}$.

分析 根据题意画出图象,根据正弦定理即可求出.

解答 解:由题意弧AB所对的圆心角为β-α=60°-30°=30°,半径为1,如图所示,
所以∠A=∠B=75°,
由正弦定理得$\frac{AB}{sin30°}$=$\frac{1}{sin75°}$,
∴AB=$\frac{\frac{1}{2}}{sin(30°+45°)}$=$\frac{\sqrt{6}-\sqrt{2}}{2}$,
故答案为:$\frac{\sqrt{6}-\sqrt{2}}{2}$

点评 本题考查了正弦定理和三角函数的化简和求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是(  )
A.(-∞,$\frac{1}{4}$]B.(0,$\frac{1}{4}$)C.(-$\frac{1}{4}$,0)D.[-$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对某电子元件进行寿命追踪调查,所得情况如频率分布直方图.(1)图中纵坐标y0处刻度不清,根据图表所提供的数据还原y0
(2)根据图表的数据按分层抽样,抽取20个元件,寿命为100~300之间的应抽取几个;
(3)从(2)中抽出的寿命落在100~300之间的元件中任取2个元件,求事件“恰好有一个寿命为100~200,一个寿命为200~300”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=sin2(x+$\frac{π}{6}$)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若角α的终边上有一点P(-1,m),且sinαcosα=$\frac{\sqrt{3}}{4}$,则m的值-$\sqrt{3}$ 或-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,△PQR中,∠Q=90°,又∠QPR=45°,已知G为△PQR的重心,若OG=a,求△PQR的周长(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}满足:a1=2014,an-an•an+1=1,ln表示an的前n项之积,则l2014=-2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过直角坐标平面xOy中的抛物线y2=2px的焦点F作一条倾斜角为$\frac{π}{4}$的直线与抛物线相交于A,B两点.
(1)若p=2,求A,B两点间的距离;
(2)当p∈(0,+∞)时,判断∠AOB是否为定值.若是,求出其余弦值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是一个几何体的三视图,其俯视图的面积为8$\sqrt{2}$,则该几何体的表面积为(  )
A.8B.20+8$\sqrt{2}$C.16D.24+8$\sqrt{2}$

查看答案和解析>>

同步练习册答案