分析 (Ⅰ)连接BD,取DC的中点G,连接BG,作BK⊥EC,K为垂足,根据线面垂直的判定定理可知DE⊥平面SBC,然后分别求出SE与EB的长,从而得到结论;
(Ⅱ)根据边长的关系可知△ADE为等腰三角形,取ED中点F,连接AF,连接FG,根据二面角平面角的定义可知∠AFG是二面角A-DE-C的平面角,然后在三角形AGF中求出二面角A-DE-C的大小.
解答
解:(Ⅰ)连接BD,取DC的中点G,连接BG,
由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD.
又SD⊥平面ABCD,故BC⊥SD,
所以,BC⊥平面BDS,BC⊥DE.
作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,
故BK⊥平面EDC,BK⊥DE,DE与平面SBC内的两条相交直线BK、BC都垂直,
DE⊥平面SBC,DE⊥EC,DE⊥SD.
SB=$\sqrt{S{D}^{2}+D{B}^{2}}$=$\sqrt{6}$,DE=$\frac{SD•DB}{SB}$=$\frac{2}{\sqrt{3}}$,
EB=$\sqrt{D{B}^{2}-D{E}^{2}}$=$\frac{\sqrt{6}}{3}$,SE=SB-EB=$\frac{2\sqrt{6}}{3}$,
所以$\frac{SE}{EB}$=2.
(Ⅱ)SA=$\sqrt{S{D}^{2}+A{D}^{2}}$=$\sqrt{5}$,AB=1,SE=2EB,AB⊥SA,知
AE=$\sqrt{(\frac{1}{3}SA)^{2}+(\frac{2}{3}AB)^{2}}$=1,又AD=1.
故△ADE为等腰三角形.
取ED中点F,连接AF,则AF⊥DE,AF=$\sqrt{A{D}^{2}-D{F}^{2}}$=$\frac{\sqrt{6}}{3}$.
连接FG,则FG∥EC,FG⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
连接AG,AG=$\sqrt{2}$,FG=$\sqrt{D{G}^{2}-D{F}^{2}}$=$\frac{\sqrt{6}}{3}$,
cos∠AFG=$\frac{A{F}^{2}+F{G}^{2}-A{G}^{2}}{2AF•FG}$=-$\frac{1}{2}$,
所以,二面角A-DE-C的大小为120°.
点评 本题考查两线段长比值的求法,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [1,+∞) | C. | (-∞,1) | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k越大,“X与Y有关系”的可信程度越小 | |
| B. | k越小,“X与Y有关系”的可信程度越小 | |
| C. | k越接近于0,“X与Y没有关系”的可信程度越小 | |
| D. | k越大,“X与Y没有关系”的可信程度越大 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | 1 | C. | 2 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 60 | D. | 80 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com