精英家教网 > 高中数学 > 题目详情
设函数f(x)=a+x-lnx有两个零点,则a的范围为(  )
A、[1,+∞)
B、(1,+∞)
C、(-∞,-1)
D、(-∞,1]
考点:函数零点的判定定理
专题:函数的性质及应用
分析:先求出函数的导数,得到函数的单调区间,从而得出f(1)是函数的最小值,只需f(1)<0即可.
解答: 解:∵f′(x)=1-
1
x
=
x-1
x
,(x>0)
∴零点为x=1,
令f′(x)>0,解得:x>1,
令f(x)<0,解得:0<x<1,
则函数在(0,1)递减,在(1,+∞)递增,
∴f(x)min=f(1),
∵函数f(x)=a+x-lnx有两个零点,
∴令f(1)<0即可解得a<-1
故选:C.
点评:本题考查了函数的单调性,函数的零点问题,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,圆周上按顺时针方向标有1,2,3,4,5五个点,一只青蛙按顺时针方向绕圆从一个点跳到另一点;若停在奇数点上,则下一次只能跳一个点;若停在偶数点上,则下一次可以跳两个点,该青蛙从5这点跳起,跳2008次后它将停在的点是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,根据下列条件解三角形,其中有两个解的是(  )
A、b=10,A=45°,C=60°
B、a=6,c=5,B=60°
C、a=7,b=5,A=60°
D、a=14,b=16,A=45°

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an},a1=1,an+1=
2an
an+2
(n∈N*),则a5=(  )
A、
1
3
B、
2
5
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)为偶函数,且[0,+∞)上单调递减,则y=f(2-x2)的一个单调递增区间为(  )
A、(-∞,0]
B、[0,+∞)
C、[0,
2
]
D、[
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

OA
=
a
OB
=
b
,则∠AOB的平分线上的向量
OC
为(  )
A、
a
|
a
|
+
b
|
b
|
B、
|
b
|
a
+|
a
|
b
|
a
|+|
b
|
C、λ(
a
|
a
|
+
b
|
b
|
),λ由
DC
确定
D、
a
+
b
|
a
+
b
|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(ax+2)6,f′(x)是f(x)的导数,若f′(x)的展开式中x的系数大于f(x)的展开式中x的系数,则a的取值范围是(  )
A、a>
2
5
或-2<a<0或a<-2
B、0<a<
2
5
C、a>
2
5
D、a>
2
5
或a<0

查看答案和解析>>

科目:高中数学 来源: 题型:

设f0(x)=cosx,且对任意的n∈N,都有 fn+1(x)=fn′(x),则f2013(x)=(  )
A、cosxB、sinx
C、-sinxD、-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)求直线DE与AC所成的角.

查看答案和解析>>

同步练习册答案