精英家教网 > 高中数学 > 题目详情
设f0(x)=cosx,且对任意的n∈N,都有 fn+1(x)=fn′(x),则f2013(x)=(  )
A、cosxB、sinx
C、-sinxD、-cosx
考点:导数的运算
专题:导数的概念及应用
分析:根据题中已知条件先找出函数fn(x)的规律,便可发现fn(x)的循环周期为4,从而求出f2013(x)的值.
解答: 解:∵f0(x)=cosx
f1(x)=f0'(x)=-sinx
f2(x)=f1'(x)=-cosx
f3(x)=f2'(x)=sinx
f4(x)=f3'(x)=cosx

由上面可以看出,以4为周期进行循环
∴f2013(x)=f1(x)=-sinx.
故选:C
点评:本题考查三角函数求导、函数周期性的应用,考查观察、归纳方法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,既是奇函数又是增函数的为(  )
A、y=x+1
B、y=-x3
C、y=
1
x
D、y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a+x-lnx有两个零点,则a的范围为(  )
A、[1,+∞)
B、(1,+∞)
C、(-∞,-1)
D、(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

数列1,2,2,3,3,3,4,4,4,4,…中第100项的值是(  )
A、10B、13C、14D、100

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(
2
),c=f(-2),则a,b,c大小关系是(  )
A、a>b>c
B、a>c>b
C、b>c>a
D、c>b>a
y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的增函数,A(0,-2),B(4,2)是其图象上的两点,那么|f(
1
2x+1
)|<2的解集是(  )
A、(1,4)
B、(1,+∞)
C、(-∞,1)∪[4,+∞]
D、(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

一条光线从点A(-2,3)射出,经x轴反射后,反射光线经过点B(3,2),则反射光线所在的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p(x)=x,fn(x)=(1+x)n
(1)若g(x)=p(1)f5(x)+p(2)f6(x)+p(3)f7(x),求g(x)的展开式中x5的系数;
(2)证明:C
 
m
m
+2C
 
m
m+1
+3C
 
m
m+2
+…+nC
 
m
m+n-1
=
(m+1)n+1
m+2
C
 
m+1
m+n
(m,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
mx2
-2x+lnx.
(Ⅰ)判断x=1能否为函数f(x)的极值点,并说明理由;
(Ⅱ)若m≥0,求f(x)的单调递增区间;
(Ⅲ)若存在m∈[-4,-1),使得定义在[1,t]上的函数g(x)=f(x)-ln(x+1)+x3在x=1处取得最大值,求实数t的最大值.

查看答案和解析>>

同步练习册答案